Plato Data Intelligence.
Vertical Search & Ai.

Robust phase-controlled gates for scalable atomic quantum processors using optical standing waves

Date:

Shannon Whitlock

European Center for Quantum Sciences and aQCess – Atom Quantum Computing as a Service, Institut de Science et d’Ingénierie Supramoléculaire (UMR 7006), University of Strasbourg and CNRS

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

A simple scheme is presented for realizing robust optically controlled quantum gates for scalable atomic quantum processors by driving the qubits with optical standing waves. Atoms localized close to the antinodes of the standing wave can realize phase-controlled quantum operations that are potentially more than an order of magnitude less sensitive to the local optical phase and atomic motion than corresponding travelling wave configurations. The scheme is compatible with robust optimal control techniques and spatial qubit addressing in atomic arrays to realize phase controlled operations without the need for tight focusing and precise positioning of the control lasers. This will be particularly beneficial for quantum gates involving Doppler sensitive optical frequency transitions and provides an all optical route to scaling up atomic quantum processors.

We put forward a simple scheme for realizing robust optically controlled quantum gates for scalable atomic quantum processors by driving the qubits with optical standing waves. Compared to existing strategies based on travelling wave lasers, atoms localized close to the antinodes of an optical standing wave can be made to realize phase-controlled quantum operations, even without the need for tight focusing of the control lasers, that are inherently much less sensitive to atomic position variations and atomic motion, thus providing a route to circumvent several dominant errors for atom based quantum processors.

► BibTeX data

► References

[1] H.-J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller. “Quantum computing with neutral atoms”. Journal of Modern Optics 47, 415–451 (2000).
https:/​/​doi.org/​10.1080/​09500340008244052

[2] M Saffman. “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges”. Journal of Physics B: Atomic, Molecular and Optical Physics 49, 202001 (2016).
https:/​/​doi.org/​10.1088/​0953-4075/​49/​20/​202001

[3] M. Morgado and S. Whitlock. “Quantum simulation and computing with Rydberg-interacting qubits”. AVS Quantum Science 3, 023501 (2021).
https:/​/​doi.org/​10.1116/​5.0036562

[4] Andrew D. Ludlow, Martin M. Boyd, Jun Ye, E. Peik, and P. O. Schmidt. “Optical atomic clocks”. Rev. Mod. Phys. 87, 637–701 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.637

[5] Luca Pezzè, Augusto Smerzi, Markus K. Oberthaler, Roman Schmied, and Philipp Treutlein. “Quantum metrology with nonclassical states of atomic ensembles”. Rev. Mod. Phys. 90, 035005 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.035005

[6] M Saffman, X L Zhang, A T Gill, L Isenhower, and T G Walker. “Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms”. Journal of Physics: Conference Series 264, 012023 (2011).
https:/​/​doi.org/​10.1088/​1742-6596/​264/​1/​012023

[7] Sylvain de Léséleuc, Daniel Barredo, Vincent Lienhard, Antoine Browaeys, and Thierry Lahaye. “Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states”. Phys. Rev. A 97, 053803 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.053803

[8] T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman. “Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array”. Phys. Rev. Lett. 123, 230501 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.230501

[9] Matthew L Day, Pei Jiang Low, Brendan White, Rajibul Islam, and Crystal Senko. “Limits on atomic qubit control from laser noise”. npj Quantum Information 8, 1–10 (2022).
https:/​/​doi.org/​10.1038/​s41534-022-00586-4

[10] David J Wineland, C Monroe, Wayne M Itano, Dietrich Leibfried, Brian E King, and Dawn M Meekhof. “Experimental issues in coherent quantum-state manipulation of trapped atomic ions”. Journal of research of the National Institute of Standards and Technology 103, 259 (1998).
https:/​/​doi.org/​10.6028/​jres.103.019

[11] Matthew A. Norcia, Aaron W. Young, William J. Eckner, Eric Oelker, Jun Ye, and Adam M. Kaufman. “Seconds-scale coherence on an optical clock transition in a tweezer array”. Science 366, 93–97 (2019).
https:/​/​doi.org/​10.1126/​science.aay0644

[12] Ivaylo S. Madjarov, Alexandre Cooper, Adam L. Shaw, Jacob P. Covey, Vladimir Schkolnik, Tai Hyun Yoon, Jason R. Williams, and Manuel Endres. “An atomic-array optical clock with single-atom readout”. Phys. Rev. X 9, 041052 (2019).
https:/​/​doi.org/​10.1103/​PhysRevX.9.041052

[13] Aaron W Young, William J Eckner, William R Milner, Dhruv Kedar, Matthew A Norcia, Eric Oelker, Nathan Schine, Jun Ye, and Adam M Kaufman. “Half-minute-scale atomic coherence and high relative stability in a tweezer clock”. Nature 588, 408–413 (2020).
https:/​/​doi.org/​10.1038/​s41586-020-3009-y

[14] Nathan Schine, Aaron W Young, William J Eckner, Michael J Martin, and Adam M Kaufman. “Long-lived bell states in an array of optical clock qubits”. Nature Physics 18, 1067–1073 (2022).
https:/​/​doi.org/​10.1038/​s41567-022-01678-w

[15] C J Picken, R Legaie, K McDonnell, and J D Pritchard. “Entanglement of neutral-atom qubits with long ground-Rydberg coherence times”. Quantum Science and Technology 4, 015011 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aaf019

[16] Henning Labuhn, Sylvain Ravets, Daniel Barredo, Lucas Béguin, Florence Nogrette, Thierry Lahaye, and Antoine Browaeys. “Single-atom addressing in microtraps for quantum-state engineering using Rydberg atoms”. Phys. Rev. A 90, 023415 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.023415

[17] Yang Wang, Xianli Zhang, Theodore A. Corcovilos, Aishwarya Kumar, and David S. Weiss. “Coherent addressing of individual neutral atoms in a 3D optical lattice”. Phys. Rev. Lett. 115, 043003 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.043003

[18] Yang Wang, Aishwarya Kumar, Tsung-Yao Wu, and David S. Weiss. “Single-qubit gates based on targeted phase shifts in a 3D neutral atom array”. Science 352, 1562–1565 (2016).
https:/​/​doi.org/​10.1126/​science.aaf2581

[19] Holly K. Cummins, Gavin Llewellyn, and Jonathan A. Jones. “Tackling systematic errors in quantum logic gates with composite rotations”. Phys. Rev. A 67, 042308 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.67.042308

[20] Neville Chen, Lintao Li, William Huie, Mingkun Zhao, Ian Vetter, Chris H. Greene, and Jacob P. Covey. “Analyzing the Rydberg-based optical-metastable-ground architecture for $^{171}mathrm{Yb}$ nuclear spins”. Phys. Rev. A 105, 052438 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.052438

[21] Alec Jenkins, Joanna W. Lis, Aruku Senoo, William F. McGrew, and Adam M. Kaufman. “Ytterbium nuclear-spin qubits in an optical tweezer array”. Phys. Rev. X 12, 021027 (2022).
https:/​/​doi.org/​10.1103/​PhysRevX.12.021027

[22] Shuo Ma, Alex P. Burgers, Genyue Liu, Jack Wilson, Bichen Zhang, and Jeff D. Thompson. “Universal gate operations on nuclear spin qubits in an optical tweezer array of $^{171}mathrm{Yb}$ atoms”. Phys. Rev. X 12, 021028 (2022).
https:/​/​doi.org/​10.1103/​PhysRevX.12.021028

[23] I.I. Beterov, E.A. Yakshina, D.B. Tretyakov, V.M. Entin, N.V. Al’yanova, K.Yu. Mityanin, A.M. Faruk, and I.I. Ryabtsev. “Implementation of one-qubit quantum gates with individual addressing of two rubidium atoms in two optical dipole traps”. Quantum Electronics 51, 464–472 (2021).
https:/​/​doi.org/​10.1070/​qel17583

[24] Ingvild Hansen, Amanda E. Seedhouse, Andre Saraiva, Arne Laucht, Andrew S. Dzurak, and Chih Hwan Yang. “Pulse engineering of a global field for robust and universal quantum computation”. Phys. Rev. A 104, 062415 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.104.062415

[25] Ingvild Hansen, Amanda E Seedhouse, Kok Wai Chan, Fay Hudson, Kohei M Itoh, Arne Laucht, Andre Saraiva, Chih Hwan Yang, and Andrew S Dzurak. “Implementation of an advanced dressing protocol for global qubit control in silicon”. Applied Physics Reviews 9, 031409 (2022).
https:/​/​doi.org/​10.1063/​5.0096467

[26] Junkai Zeng, C. H. Yang, A. S. Dzurak, and Edwin Barnes. “Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates”. Phys. Rev. A 99, 052321 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.052321

[27] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. “Parallel implementation of high-fidelity multiqubit gates with neutral atoms”. Phys. Rev. Lett. 123, 170503 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.170503

[28] Sven Jandura and Guido Pupillo. “Time-optimal two- and three-qubit gates for Rydberg atoms”. Quantum 6, 712 (2022).
https:/​/​doi.org/​10.22331/​q-2022-05-13-712

[29] Jonathan J. Jones. “Composite pulses in nmr quantum computation”. J. Ind. Inst. Sci. 89, 303 (2009).
https:/​/​doi.org/​10.48550/​arXiv.0906.4719

[30] Donovan Buterakos, Sankar Das Sarma, and Edwin Barnes. “Geometrical formalism for dynamically corrected gates in multiqubit systems”. PRX Quantum 2, 010341 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010341

Cited by

[1] Sven Jandura, Jeff D Thompson, and Guido Pupillo, “Optimizing Rydberg Gates for Logical Qubit Performance”, arXiv:2210.06879, (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2023-03-11 00:45:58). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2023-03-11 00:45:56).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?