Plato Data Intelligence.
Vertical Search & Ai.

Work and Fluctuations: Coherent vs. Incoherent Ergotropy Extraction

Date:

Marcin Łobejko

Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdansk, Poland
International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We consider a quasi-probability distribution of work for an isolated quantum system coupled to the energy-storage device given by the ideal weight. Specifically, we analyze a trade-off between changes in average energy and changes in weight’s variance, where work is extracted from the coherent and incoherent ergotropy of the system. Primarily, we reveal that the extraction of positive coherent ergotropy can be accompanied by the reduction of work fluctuations (quantified by a variance loss) by utilizing the non-classical states of a work reservoir. On the other hand, we derive a fluctuation-decoherence relation for a quantum weight, defining a lower bound of its energy dispersion via a dumping function of the coherent contribution to the system’s ergotropy. Specifically, it reveals that unlocking ergotropy from coherences results in high fluctuations, which diverge when the total coherent energy is unlocked. The proposed autonomous protocol of work extraction shows a significant difference between extracting coherent and incoherent ergotropy: The former can decrease the variance, but its absolute value diverges if more and more energy is extracted, whereas for the latter, the gain is always non-negative, but a total (incoherent) ergotropy can be extracted with finite work fluctuations. Furthermore, we present the framework in terms of the introduced quasi-probability distribution, which has a physical interpretation of its cumulants, is free from the invasive nature of measurements, and reduces to the two-point measurement scheme (TPM) for incoherent states. Finally, we analytically solve the work-variance trade-off for a qubit, explicitly revealing all the above quantum and classical regimes.

► BibTeX data

► References

[1] Bochkov GN, Kuzovle YE. General theory of thermal fluctuations in nonlinear systems. Sov Phys JETP. 1977;45:125.

[2] Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys Rev Lett. 1997 Apr;78:2690–2693. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.78.2690.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2690

[3] Crooks GE. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E. 1999 Sep;60:2721–2726. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.60.2721.
https:/​/​doi.org/​10.1103/​PhysRevE.60.2721

[4] Esposito M, Harbola U, Mukamel S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev Mod Phys. 2009 Dec;81:1665–1702. Available from: https:/​/​doi.org/​10.1103/​RevModPhys.81.1665.
https:/​/​doi.org/​10.1103/​RevModPhys.81.1665

[5] Campisi M, Hänggi P, Talkner P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev Mod Phys. 2011 Jul;83:771–791. Available from: https:/​/​doi.org/​10.1103/​RevModPhys.83.771.
https:/​/​doi.org/​10.1103/​RevModPhys.83.771

[6] Talkner P, Lutz E, Hänggi P. Fluctuation theorems: Work is not an observable. Phys Rev E. 2007 May;75:050102. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.75.050102.
https:/​/​doi.org/​10.1103/​PhysRevE.75.050102

[7] Jarzynski C, Wójcik DK. Classical and Quantum Fluctuation Theorems for Heat Exchange. Phys Rev Lett. 2004 Jun;92:230602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.92.230602.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.230602

[8] Deffner S, Lutz E. Nonequilibrium Entropy Production for Open Quantum Systems. Phys Rev Lett. 2011 Sep;107:140404. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.107.140404.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.140404

[9] Manzano G, Horowitz JM, Parrondo JMR. Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production. Phys Rev X. 2018 Aug;8:031037. Available from: https:/​/​doi.org/​10.1103/​PhysRevX.8.031037.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031037

[10] Ito K, Talkner P, Venkatesh BP, Watanabe G. Generalized energy measurements and quantum work compatible with fluctuation theorems. Phys Rev A. 2019 Mar;99:032117. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.99.032117.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032117

[11] Debarba T, Manzano G, Guryanova Y, Huber M, Friis N. Work estimation and work fluctuations in the presence of non-ideal measurements. New Journal of Physics. 2019 nov;21(11):113002. Available from: https:/​/​doi.org/​10.1088/​1367-2630/​ab4d9d.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4d9d

[12] Micadei K, Landi GT, Lutz E. Quantum Fluctuation Theorems beyond Two-Point Measurements. Phys Rev Lett. 2020 Mar;124:090602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.124.090602.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.090602

[13] Yukawa S. A Quantum Analogue of the Jarzynski Equality. Journal of the Physical Society of Japan. 2000;69(8):2367–2370. Available from: https:/​/​doi.org/​10.1143/​JPSJ.69.2367.
https:/​/​doi.org/​10.1143/​JPSJ.69.2367

[14] Allahverdyan AE, Nieuwenhuizen TM. The second law and fluctuations of work: The case against quantum fluctuation theorems. arXiv; 2004. Available from: https:/​/​arxiv.org/​abs/​cond-mat/​0408697.
https:/​/​arxiv.org/​abs/​cond-mat/​0408697

[15] Perarnau-Llobet M, Bäumer E, Hovhannisyan KV, Huber M, Acin A. No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems. Phys Rev Lett. 2017 Feb;118:070601. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.118.070601.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.070601

[16] Bäumer E, Lostaglio M, Perarnau-Llobet M, Sampaio R. In: Binder F, Correa LA, Gogolin C, Anders J, Adesso G, editors. Fluctuating Work in Coherent Quantum Systems: Proposals and Limitations. Cham: Springer International Publishing; 2018. p. 275–300. Available from: https:/​/​doi.org/​10.1007/​978-3-319-99046-0_11.
https:/​/​doi.org/​10.1007/​978-3-319-99046-0_11

[17] Allahverdyan AE. Nonequilibrium quantum fluctuations of work. Phys Rev E. 2014 Sep;90:032137. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.90.032137.
https:/​/​doi.org/​10.1103/​PhysRevE.90.032137

[18] Solinas P, Gasparinetti S. Full distribution of work done on a quantum system for arbitrary initial states. Phys Rev E. 2015 Oct;92:042150. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.92.042150.
https:/​/​doi.org/​10.1103/​PhysRevE.92.042150

[19] Solinas P, Gasparinetti S. Probing quantum interference effects in the work distribution. Phys Rev A. 2016 Nov;94:052103. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.94.052103.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052103

[20] Miller HJD, Anders J. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework. New Journal of Physics. 2017 jun;19(6):062001. Available from: https:/​/​doi.org/​10.1088/​1367-2630/​aa703f.
https:/​/​doi.org/​10.1088/​1367-2630/​aa703f

[21] Lostaglio M. Quantum Fluctuation Theorems, Contextuality, and Work Quasiprobabilities. Phys Rev Lett. 2018 Jan;120:040602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.120.040602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.040602

[22] Levy A, Lostaglio M. Quasiprobability Distribution for Heat Fluctuations in the Quantum Regime. PRX Quantum. 2020 Sep;1:010309. Available from: https:/​/​doi.org/​10.1103/​PRXQuantum.1.010309.
https:/​/​doi.org/​10.1103/​PRXQuantum.1.010309

[23] Korzekwa K, Lostaglio M, Oppenheim J, Jennings D. The extraction of work from quantum coherence. New Journal of Physics. 2016 feb;18(2):023045. Available from: https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023045.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023045

[24] Łobejko M. The tight Second Law inequality for coherent quantum systems and finite-size heat baths. Nature Communications. 2021 Feb;12(1):918. Available from: https:/​/​doi.org/​10.1038/​s41467-021-21140-4.
https:/​/​doi.org/​10.1038/​s41467-021-21140-4

[25] Åberg J. Fully Quantum Fluctuation Theorems. Phys Rev X. 2018 Feb;8:011019. Available from: https:/​/​doi.org/​10.1103/​PhysRevX.8.011019.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011019

[26] Alhambra AM, Masanes L, Oppenheim J, Perry C. Fluctuating Work: From Quantum Thermodynamical Identities to a Second Law Equality. Phys Rev X. 2016 Oct;6:041017. Available from: https:/​/​doi.org/​10.1103/​PhysRevX.6.041017.
https:/​/​doi.org/​10.1103/​PhysRevX.6.041017

[27] Brunner N, Linden N, Popescu S, Skrzypczyk P. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys Rev E. 2012 May;85:051117. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.85.051117.
https:/​/​doi.org/​10.1103/​PhysRevE.85.051117

[28] Skrzypczyk P, Short AJ, Popescu S. Work extraction and thermodynamics for individual quantum systems. Nature Communications. 2014;5(1):4185. Available from: https:/​/​doi.org/​10.1038/​ncomms5185.
https:/​/​doi.org/​10.1038/​ncomms5185

[29] Lipka-Bartosik P, Mazurek P, Horodecki M. Second law of thermodynamics for batteries with vacuum state. Quantum. 2021 Mar;5:408. Available from: https:/​/​doi.org/​10.22331/​q-2021-03-10-408.
https:/​/​doi.org/​10.22331/​q-2021-03-10-408

[30] Łobejko M, Mazurek P, Horodecki M. Thermodynamics of Minimal Coupling Quantum Heat Engines. Quantum. 2020 Dec;4:375. Available from: https:/​/​doi.org/​10.22331/​q-2020-12-23-375.
https:/​/​doi.org/​10.22331/​q-2020-12-23-375

[31] Pusz W, Woronowicz SL. Passive states and KMS states for general quantum systems. Comm Math Phys. 1978;58(3):273–290. Available from: https:/​/​projecteuclid.org:443/​euclid.cmp/​1103901491.
https:/​/​projecteuclid.org:443/​euclid.cmp/​1103901491

[32] Allahverdyan AE, Balian R, Nieuwenhuizen TM. Maximal work extraction from finite quantum systems. Europhysics Letters (EPL). 2004 aug;67(4):565–571. Available from: https:/​/​doi.org/​10.1209/​epl/​i2004-10101-2.
https:/​/​doi.org/​10.1209/​epl/​i2004-10101-2

[33] Perarnau-Llobet M, Hovhannisyan KV, Huber M, Skrzypczyk P, Tura J, Acín A. Most energetic passive states. Phys Rev E. 2015 Oct;92:042147. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.92.042147.
https:/​/​doi.org/​10.1103/​PhysRevE.92.042147

[34] Horodecki M, Oppenheim J. Fundamental limitations for quantum and nanoscale thermodynamics. Nature Communications. 2013;4(1):2059. Available from: https:/​/​doi.org/​10.1038/​ncomms3059.
https:/​/​doi.org/​10.1038/​ncomms3059

[35] Streltsov A, Adesso G, Plenio MB. Colloquium: Quantum coherence as a resource. Rev Mod Phys. 2017 Oct;89:041003. Available from: https:/​/​doi.org/​10.1103/​RevModPhys.89.041003.
https:/​/​doi.org/​10.1103/​RevModPhys.89.041003

[36] Hudson RL. When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics. 1974;6(2):249–252. Available from: https:/​/​www.sciencedirect.com/​science/​article/​pii/​003448777490007X.
https:/​/​www.sciencedirect.com/​science/​article/​pii/​003448777490007X

[37] Lostaglio M, Jennings D, Rudolph T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications. 2015 Mar;6(1):6383. Available from: https:/​/​doi.org/​10.1038/​ncomms7383.
https:/​/​doi.org/​10.1038/​ncomms7383

[38] Lostaglio M, Korzekwa K, Jennings D, Rudolph T. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics. Phys Rev X. 2015 Apr;5:021001. Available from: https:/​/​doi.org/​10.1103/​PhysRevX.5.021001.
https:/​/​doi.org/​10.1103/​PhysRevX.5.021001

[39] Francica G, Binder FC, Guarnieri G, Mitchison MT, Goold J, Plastina F. Quantum Coherence and Ergotropy. Phys Rev Lett. 2020 Oct;125:180603. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.125.180603.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.180603

[40] Ushakov NG. Lower and upper bounds for characteristic functions. Journal of Mathematical Sciences. 1997 Apr;84(3):1179–1189. Available from: https:/​/​doi.org/​10.1007/​BF02398431.
https:/​/​doi.org/​10.1007/​BF02398431

[41] Rudnicki L, Tasca DS, Walborn SP. Uncertainty relations for characteristic functions. Phys Rev A. 2016 Feb;93:022109. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.93.022109.
https:/​/​doi.org/​10.1103/​PhysRevA.93.022109

Cited by

spot_img

Latest Intelligence

spot_img