Plato Data Intelligence.
Vertical Search & Ai.

Tag: convolutional neural network

Identifying defense coverage schemes in NFL’s Next Gen Stats

This post is co-written with Jonathan Jung, Mike Band, Michael Chi, and Thompson Bliss at the National Football League. A coverage scheme refers...

AI creates high-resolution brain images from low-field strength MR scans

Portable, low-field strength MRI systems have the potential to transform neuroimaging – provided that their low spatial resolution and low signal-to-noise...

Researchers teach AI to pinpoint mutations linked to cancer

Machine learning techniques, such as deep learning, have proven surprisingly effective at identifying diseases like breast cancer. However, when it comes to identifying mutations...

Deep-learning system identifies difficult-to-detect brain metastases

Researchers at Duke University Medical Center have developed a deep-learning-based computer-aided detection (CAD) system to identify difficult-to-detect brain metastases on MR...

ByteDance saves up to 60% on inference costs while reducing latency and increasing throughput using AWS Inferentia

This is a guest blog post co-written with Minghui Yu and Jianzhe Xiao from Bytedance. ByteDance is a technology company that operates a range...

Enabling hybrid ML workflows on Amazon EKS and Amazon SageMaker with one-click Kubeflow on AWS deployment

Today, many AWS customers are building enterprise-ready machine learning (ML) platforms on Amazon Elastic Kubernetes Service (Amazon EKS) using Kubeflow on AWS (an AWS-specific...

Photon-counting CT improves detection of myeloma bone disease

Researchers at the Mayo Clinic have combined photon-counting detector (PCD) CT with deep learning-based noise...

How the Technology Industry Can Speed up Environmental Protection Efforts

The recent UN Climate Change Conference (COP26) revealed a massive credibility gap between government current policies and their net-zero goals. Even with full implementation of emissions targets set for 2030, the planet is expected to heat up by 2.4°C by the end of the century. This alarming gap has cast a dark shadow of doubt over […]

The post How the Technology Industry Can Speed up Environmental Protection Efforts appeared first on DATAVERSITY.

BrainChip Reflects on a Successful 2021, with Move to Market Readiness Behind Next-Generation Edge-Based AI Solutions

LAGUNA HILLS, Calif.–(BUSINESS WIRE)–BrainChip Holdings Ltd (ASX: BRN, OTCQX: BRCHF, ADR: BCHPY) is a leading provider of ultra-low power, high performance artificial intelligence technology and the world’s first commercial producer of neuromorphic AI chips and IP. BrainChip is looking forward to 2022 as it closes its most successful year ever buoyed by technological advancements made […]

The post BrainChip Reflects on a Successful 2021, with Move to Market Readiness Behind Next-Generation Edge-Based AI Solutions appeared first on Fintech News.

10 Key AI & Data Analytics Trends for 2022 and Beyond

What AI and data analytics trends are taking the industry by storm this year? This comprehensive review highlights upcoming directions in AI to carefully watch and consider implementing in your personal work or organization.

Computer Vision in Agriculture

Computer Vision in Agriculture = Previous post Next post =>    Tags: Agriculture, AI, Computer Vision Deep learning...

AR system shows nuclear reactor damage in real time



The system uses microscopy data to detect and quantify radiation-induced problems such as defects and swelling. The researchers hope the system could speed up the development of components for advanced nuclear reactors, which may play a critical role in reducing greenhouse gas emissions.

“We believe we are the first research team to ever demonstrate real-time image-based detection and quantification of radiation damage on the nanometre length scale in the world,” said Professor Kevin Field, a Michigan nuclear engineer and VP of machine vision start-up Theia Scientific.

The new technology was tested at the Michigan Ion Beam Laboratory. By directing beams of ions at material samples, the lab can quickly emulate the damage sustained after years or decades of use in a nuclear reactor. The team used an ion beam of the noble gas krypton to test a radiation-tolerant sample of iron, chromium, and aluminium of interest for use in fission and fusion reactors.

“If radiation exposure makes your metal like Swiss cheese instead of a good Wisconsin cheddar, you would know it’s not going to have structural integrity,” said Field.

The krypton ions create radiation defects in the sample; in this case, a plane of missing or extra atoms sandwiched between two ordinary crystal lattice planes. They appear as black dots in the electron microscope images. The lab is able to observe the development of these defects with an electron microscope, which runs during the irradiation process, producing a video.

“Previously, we would record the whole video for the irradiation experiments and then characterise just a few frames," said Dr Priyam Patki, who ran the experiment with Christopher Field, president of Theia Scientific. "But now, with the help of this technique, we are able to do it for each and every frame, giving us an insight into the dynamic behaviour of the defects in real time." 

To assess radiation-induced defects, researchers would typically download the video and count every defect in selected frames. With the hundreds, or even thousands, of images or video frames created by modern microscopes, much of the detailed information would be lost, as counting the defects manually in every frame is so laborious. 

Instead, the team used Theia Scientific's software to detect and quantify the radiation-induced defects instantaneously during the experiment. The software displays the results in graphics overlaid on the electron microscope imagery, which label the defects (giving size, number, location and density) and summarise this information as a measure of structural integrity. 

“The real-time assessment of structural integrity allows us to stop early if a material is performing badly and cuts out any extensive human-based quantification,” said Field. “We believe that our process reduces the time from idea to conclusion by nearly 80 times.”

Theia’s software uses a convolutional neural network, a type of artificial neural network often used for interpreting images, to analyse the video frames. The neural network achieved high speed and robust interpretation across samples of varying quality, and this in turn enabled the leap from manual interpretation to real-time machine vision.

It is hoped that the interpretation technique could be adapted for other types of image-based microscopy. Field commented: “We see clear pathways to accelerate discoveries in the energy, transportation and biomedical sectors.”

Latest Intelligence

spot_img
spot_img
spot_img

Chat with us

Hi there! How can I help you?