Plato Data Intelligence.
Vertical Search & Ai.

Stabilizer entropies and nonstabilizerness monotones

Date:

Tobias Haug1 and Lorenzo Piroli2

1QOLS, Blackett Laboratory, Imperial College London SW7 2AZ, UK
2Philippe Meyer Institute, Physics Department, École Normale Supérieure (ENS), Université PSL, 24 rue Lhomond, F-75231 Paris, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We study different aspects of the stabilizer entropies (SEs) and compare them against known nonstabilizerness monotones such as the min-relative entropy and the robustness of magic. First, by means of explicit examples, we show that, for Rényi index $0leq nleq2$, the SEs are not monotones with respect to stabilizer protocols which include computational-basis measurements, not even when restricting to pure states (while the question remains open for $ngeq2$). Next, we show that, for any Rényi index, the SEs do not satisfy a strong monotonicity condition with respect to computational-basis measurements. We further study SEs in different classes of many-body states. We compare the SEs with other measures, either proving or providing numerical evidence for inequalities between them.
Finally, we discuss exact or efficient tensor-network numerical methods to compute SEs of matrix-product states (MPSs) for large numbers of qubits. In addition to previously developed exact methods to compute the Rényi SEs, we also put forward a scheme based on perfect MPS sampling, allowing us to compute efficiently the von Neumann SE for large bond dimensions.

► BibTeX data

► References

[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70: 052328, Nov 2004. 10.1103/​PhysRevA.70.052328.
https:/​/​doi.org/​10.1103/​PhysRevA.70.052328

[2] Hussain Anwar, Benjamin J Brown, Earl T Campbell, and Dan E Browne. Fast decoders for qudit topological codes. New J. Phys., 16 (6): 063038, 2014. 10.1088/​1367-2630/​16/​6/​063038.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​6/​063038

[3] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov. Lower bounds on the non-clifford resources for quantum computations. Quantum Science Tech., 5 (3): 035009, 2020. 10.1088/​2058-9565/​ab8963.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8963

[4] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A, 71: 022316, Feb 2005. 10.1103/​PhysRevA.71.022316.
https:/​/​doi.org/​10.1103/​PhysRevA.71.022316

[5] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3: 181, 2019. 10.22331/​q-2019-09-02-181.
https:/​/​doi.org/​10.22331/​q-2019-09-02-181

[6] Kaifeng Bu and Dax Enshan Koh. Efficient classical simulation of clifford circuits with nonstabilizer input states. Phys. Rev. Lett., 123: 170502, Oct 2019. 10.1103/​PhysRevLett.123.170502.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.170502

[7] Kaifeng Bu, Roy J Garcia, Arthur Jaffe, Dax Enshan Koh, and Lu Li. Complexity of quantum circuits via sensitivity, magic, and coherence. arXiv:2204.12051, 2022. URL https:/​/​doi.org/​10.48550/​arXiv.2204.12051.
https:/​/​doi.org/​10.48550/​arXiv.2204.12051
arXiv:2204.12051

[8] Earl T. Campbell. Catalysis and activation of magic states in fault-tolerant architectures. Phys. Rev. A, 83: 032317, Mar 2011. 10.1103/​PhysRevA.83.032317.
https:/​/​doi.org/​10.1103/​PhysRevA.83.032317

[9] Earl T. Campbell. Enhanced fault-tolerant quantum computing in $d$-level systems. Phys. Rev. Lett., 113: 230501, Dec 2014. 10.1103/​PhysRevLett.113.230501.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.230501

[10] Earl T. Campbell, Hussain Anwar, and Dan E. Browne. Magic-state distillation in all prime dimensions using quantum reed-muller codes. Phys. Rev. X, 2: 041021, Dec 2012. 10.1103/​PhysRevX.2.041021. URL https:/​/​doi.org/​10.1103/​PhysRevX.2.041021.
https:/​/​doi.org/​10.1103/​PhysRevX.2.041021

[11] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549 (7671): 172–179, 2017. 10.1038/​nature23460.
https:/​/​doi.org/​10.1038/​nature23460

[12] Liyuan Chen, Roy J Garcia, Kaifeng Bu, and Arthur Jaffe. Magic of random matrix product states. arXiv:2211.10350, 2022. URL https:/​/​doi.org/​10.48550/​arXiv.2211.10350.
https:/​/​doi.org/​10.48550/​arXiv.2211.10350
arXiv:2211.10350

[13] Eric Chitambar and Gilad Gour. Quantum resource theories. Rev. Mod. Phys., 91: 025001, Apr 2019. 10.1103/​RevModPhys.91.025001. URL https:/​/​doi.org/​10.1103/​RevModPhys.91.025001.
https:/​/​doi.org/​10.1103/​RevModPhys.91.025001

[14] J Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete. Matrix product density operators: Renormalization fixed points and boundary theories. Ann. Phys., 378: 100–149, 2017. 10.1016/​j.aop.2016.12.030.
https:/​/​doi.org/​10.1016/​j.aop.2016.12.030

[15] J Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93 (4): 045003, 2021. 10.1103/​RevModPhys.93.045003.
https:/​/​doi.org/​10.1103/​RevModPhys.93.045003

[16] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett., 102: 110502, Mar 2009. 10.1103/​PhysRevLett.102.110502.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.110502

[17] Glen Evenbly. A practical guide to the numerical implementation of tensor networks i: Contractions, decompositions, and gauge freedom. Frontiers in Applied Mathematics and Statistics, 8: 806549, 2022. 10.3389/​fams.2022.806549.
https:/​/​doi.org/​10.3389/​fams.2022.806549

[18] Andrew J. Ferris and Guifre Vidal. Perfect sampling with unitary tensor networks. Phys. Rev. B, 85: 165146, Apr 2012. 10.1103/​PhysRevB.85.165146.
https:/​/​doi.org/​10.1103/​PhysRevB.85.165146

[19] Daniel Gottesman. Stabilizer codes and quantum error correction. Caltech Ph. D. PhD thesis, Thesis, eprint: quant-ph/​9705052, 1997. URL https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9705052.
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9705052
arXiv:quant-ph/9705052

[20] Daniel Gottesman. The heisenberg representation of quantum computers. arXiv quant-ph/​9807006, 1998a. URL https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9807006.
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9807006
arXiv:quant-ph/9807006

[21] Daniel Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57: 127–137, Jan 1998b. 10.1103/​PhysRevA.57.127.
https:/​/​doi.org/​10.1103/​PhysRevA.57.127

[22] Oliver Hahn, Alessandro Ferraro, Lina Hultquist, Giulia Ferrini, and Laura García-Álvarez. Quantifying qubit magic resource with gottesman-kitaev-preskill encoding. Phys. Rev. Lett., 128: 210502, May 2022. 10.1103/​PhysRevLett.128.210502.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.210502

[23] Oliver Hahn, Alessandro Ferraro, Lina Hultquist, Giulia Ferrini, and Laura García-Álvarez. Erratum: Quantifying qubit magic resource with gottesman-kitaev-preskill encoding [phys. rev. lett. 128, 210502 (2022)]. Phys. Rev. Lett., 131: 049901, Jul 2023. 10.1103/​PhysRevLett.131.049901.
https:/​/​doi.org/​10.1103/​PhysRevLett.131.049901

[24] Tobias Haug and M.S. Kim. Scalable measures of magic resource for quantum computers. PRX Quantum, 4: 010301, Jan 2023. 10.1103/​PRXQuantum.4.010301.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.010301

[25] Tobias Haug and Lorenzo Piroli. Quantifying nonstabilizerness of matrix product states. Phys. Rev. B, 107 (3): 035148, 2023. 10.1103/​PhysRevB.107.035148.
https:/​/​doi.org/​10.1103/​PhysRevB.107.035148

[26] Tobias Haug, Soovin Lee, and MS Kim. Efficient stabilizer entropies for quantum computers. arXiv:2305.19152, 2023. URL https:/​/​doi.org/​10.48550/​arXiv.2305.19152.
https:/​/​doi.org/​10.48550/​arXiv.2305.19152
arXiv:2305.19152

[27] Arne Heimendahl, Markus Heinrich, and David Gross. The axiomatic and the operational approaches to resource theories of magic do not coincide. J. Math. Phys., 63 (11): 112201, 2022. 10.1063/​5.0085774.
https:/​/​doi.org/​10.1063/​5.0085774

[28] Mark Howard and Earl Campbell. Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett., 118: 090501, Mar 2017. 10.1103/​PhysRevLett.118.090501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.090501

[29] Jiaqing Jiang and Xin Wang. Lower bound for the t count via unitary stabilizer nullity. Physical Review Applied, 19 (3): 034052, 2023. 10.1103/​PhysRevApplied.19.034052.
https:/​/​doi.org/​10.1103/​PhysRevApplied.19.034052

[30] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303 (1): 2–30, 2003. 10.1016/​S0003-4916(02)00018-0.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[31] Guglielmo Lami and Mario Collura. Quantum magic via perfect sampling of matrix product states. arXiv:2303.05536, 2023. URL https:/​/​doi.org/​10.48550/​arXiv.2303.05536.
https:/​/​doi.org/​10.48550/​arXiv.2303.05536
arXiv:2303.05536

[32] Lorenzo Leone, Salvatore F. E. Oliviero, and Alioscia Hamma. Stabilizer rényi entropy. Phys. Rev. Lett., 128: 050402, Feb 2022. 10.1103/​PhysRevLett.128.050402.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.050402

[33] Lorenzo Leone, Salvatore F. E. Oliviero, Gianluca Esposito, and Alioscia Hamma. Phase transition in stabilizer entropy and efficient purity estimation. arXiv:2302.07895, 2023a. URL https:/​/​doi.org/​10.48550/​arXiv.2302.07895.
https:/​/​doi.org/​10.48550/​arXiv.2302.07895
arXiv:2302.07895

[34] Lorenzo Leone, Salvatore F. E. Oliviero, and Alioscia Hamma. Nonstabilizerness determining the hardness of direct fidelity estimation. Phys. Rev. A, 107: 022429, Feb 2023b. 10.1103/​PhysRevA.107.022429.
https:/​/​doi.org/​10.1103/​PhysRevA.107.022429

[35] Zi-Wen Liu and Andreas Winter. Many-body quantum magic. PRX Quantum, 3: 020333, May 2022. 10.1103/​PRXQuantum.3.020333.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020333

[36] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2011. ISBN 9781107002173. doi:10.1017/​CBO9780511976667.

[37] J Odavić, T Haug, G Torre, A Hamma, F Franchini, and SM Giampaolo. Complexity of frustration: a new source of non-local non-stabilizerness. arXiv:2209.10541, 2022. URL https:/​/​doi.org/​10.48550/​arXiv.2209.10541.
https:/​/​doi.org/​10.48550/​arXiv.2209.10541
arXiv:2209.10541

[38] Salvatore F. E. Oliviero, Lorenzo Leone, and Alioscia Hamma. Magic-state resource theory for the ground state of the transverse-field ising model. Phys. Rev. A, 106: 042426, Oct 2022a. 10.1103/​PhysRevA.106.042426.
https:/​/​doi.org/​10.1103/​PhysRevA.106.042426

[39] Salvatore F. E. Oliviero, Lorenzo Leone, Alioscia Hamma, and Seth Lloyd. Measuring magic on a quantum processor. npj Quantum Information, 8 (1): 148, 2022b. 10.1038/​s41534-022-00666-5.
https:/​/​doi.org/​10.1038/​s41534-022-00666-5

[40] Salvatore FE Oliviero, Lorenzo Leone, Seth Lloyd, and Alioscia Hamma. Black hole complexity, unscrambling, and stabilizer thermal machines. arXiv:2212.11337, 2022c. URL https:/​/​doi.org/​10.48550/​arXiv.2212.11337.
https:/​/​doi.org/​10.48550/​arXiv.2212.11337
arXiv:2212.11337

[41] D Perez-Garcia, F Verstraete, MM Wolf, and JI Cirac. Matrix product state representations. Quantum Inf. Comp., 7 (5): 401–430, 2007. 10.26421/​QIC7.5-6-1.
https:/​/​doi.org/​10.26421/​QIC7.5-6-1

[42] John Preskill. Fault-tolerant quantum computation. In Introduction to quantum computation and information, pages 213–269. World Scientific, 1998. 10.1142/​9789812385253_0008.
https:/​/​doi.org/​10.1142/​9789812385253_0008

[43] Bartosz Regula. Convex geometry of quantum resource quantification. J. Phys. A: Math. Theor., 51 (4): 045303, 2017. 10.1088/​1751-8121/​aa9100.
https:/​/​doi.org/​10.1088/​1751-8121/​aa9100

[44] Saubhik Sarkar, Chiranjib Mukhopadhyay, and Abolfazl Bayat. Characterization of an operational quantum resource in a critical many-body system. New J. Phys., 22 (8): 083077, 2020. 10.1088/​1367-2630/​aba919.
https:/​/​doi.org/​10.1088/​1367-2630/​aba919

[45] James R. Seddon, Bartosz Regula, Hakop Pashayan, Yingkai Ouyang, and Earl T. Campbell. Quantifying quantum speedups: Improved classical simulation from tighter magic monotones. PRX Quantum, 2: 010345, Mar 2021. 10.1103/​PRXQuantum.2.010345.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010345

[46] Troy J Sewell and Christopher David White. Mana and thermalization: Probing the feasibility of near-clifford hamiltonian simulation. Phys. Rev. B, 106 (12): 125130, 2022. 10.1103/​PhysRevB.106.125130.
https:/​/​doi.org/​10.1103/​PhysRevB.106.125130

[47] Peter W Shor. Fault-tolerant quantum computation. In Proceedings of 37th conference on foundations of computer science, pages 56–65. IEEE, 1996. 10.1109/​SFCS.1996.548464.
https:/​/​doi.org/​10.1109/​SFCS.1996.548464

[48] Pietro Silvi, Ferdinand Tschirsich, Matthias Gerster, Johannes Jünemann, Daniel Jaschke, Matteo Rizzi, and Simone Montangero. The tensor networks anthology: Simulation techniques for many-body quantum lattice systems. SciPost Phys. Lect. Notes, page 8, 2019. 10.21468/​SciPostPhysLectNotes.8.
https:/​/​doi.org/​10.21468/​SciPostPhysLectNotes.8

[49] Emanuele Tirrito, Poetri Sonya Tarabunga, Gugliemo Lami, Titas Chanda, Lorenzo Leone, Salvatore FE Oliviero, Marcello Dalmonte, Mario Collura, and Alioscia Hamma. Quantifying non-stabilizerness through entanglement spectrum flatness. arXiv:2304.01175, 2023. URL https:/​/​doi.org/​10.48550/​arXiv.2304.01175.
https:/​/​doi.org/​10.48550/​arXiv.2304.01175
arXiv:2304.01175

[50] Xhek Turkeshi, Marco Schirò, and Piotr Sierant. Measuring magic via multifractal flatness. arXiv:2305.11797, 2023. URL https:/​/​doi.org/​10.48550/​arXiv.2305.11797.
https:/​/​doi.org/​10.48550/​arXiv.2305.11797
arXiv:2305.11797

[51] Victor Veitch, SA Hamed Mousavian, Daniel Gottesman, and Joseph Emerson. The resource theory of stabilizer quantum computation. New J. Phys., 16 (1): 013009, 2014. 10.1088/​1367-2630/​16/​1/​013009.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​1/​013009

[52] Xin Wang, Mark M Wilde, and Yuan Su. Quantifying the magic of quantum channels. New J. Phys., 21 (10): 103002, 2019. 10.1088/​1367-2630/​ab451d.
https:/​/​doi.org/​10.1088/​1367-2630/​ab451d

[53] Christopher David White, ChunJun Cao, and Brian Swingle. Conformal field theories are magical. Phys. Rev. B, 103: 075145, Feb 2021. 10.1103/​PhysRevB.103.075145.
https:/​/​doi.org/​10.1103/​PhysRevB.103.075145

Cited by

[1] Poetri Sonya Tarabunga, Emanuele Tirrito, Titas Chanda, and Marcello Dalmonte, “Many-body magic via Pauli-Markov chains — from criticality to gauge theories”, arXiv:2305.18541, (2023).

[2] Emanuele Tirrito, Poetri Sonya Tarabunga, Gugliemo Lami, Titas Chanda, Lorenzo Leone, Salvatore F. E. Oliviero, Marcello Dalmonte, Mario Collura, and Alioscia Hamma, “Quantifying non-stabilizerness through entanglement spectrum flatness”, arXiv:2304.01175, (2023).

[3] Xhek Turkeshi, Marco Schirò, and Piotr Sierant, “Measuring Magic via Multifractal Flatness”, arXiv:2305.11797, (2023).

[4] Guglielmo Lami and Mario Collura, “Quantum Magic via Perfect Pauli Sampling of Matrix Product States”, arXiv:2303.05536, (2023).

[5] Junjie Chen, Yuxuan Yan, and You Zhou, “Magic of quantum hypergraph states”, arXiv:2308.01886, (2023).

[6] Oliver Hahn, Alessandro Ferraro, Lina Hultquist, Giulia Ferrini, and Laura García-Álvarez, “Erratum: Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [Phys. Rev. Lett. 128, 210502 (2022)]”, Physical Review Letters 131 4, 049901 (2023).

[7] Tobias Haug, Soovin Lee, and M. S. Kim, “Efficient stabilizer entropies for quantum computers”, arXiv:2305.19152, (2023).

[8] Davide Rattacaso, Lorenzo Leone, Salvatore F. E. Oliviero, and Alioscia Hamma, “Stabilizer entropy dynamics after a quantum quench”, arXiv:2304.13768, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-08-28 14:10:25). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-08-28 14:10:24: Could not fetch cited-by data for 10.22331/q-2023-08-28-1092 from Crossref. This is normal if the DOI was registered recently.

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?