Platón adatintelligencia.
Vertical Search & Ai.

A tiszta és piszkos qubitek harca a részleges hibajavítás korszakában

Találka:

Daniel Bultrini1,2, Samson Wang1,3, Piotr Czarnik1,4, Max Hunter Gordon1,5, M. Cerezo6,7, Patrick J. Coles1,7, és Lukasz Cincio1,7

1Elméleti osztály, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Németország
3Imperial College London, London, Egyesült Királyság
4Elméleti Fizikai Intézet, Jagelló Egyetem, Krakkó, Lengyelország.
5Instituto de Física Teórica, UAM/CSIC, Universidad Autónoma de Madrid, Madrid 28049, Spanyolország
6Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
7Quantum Science Center, Oak Ridge, TN 37931, USA

Érdekesnek találja ezt a cikket, vagy szeretne megvitatni? Scite vagy hagyjon megjegyzést a SciRate-en.

Absztrakt

When error correction becomes possible it will be necessary to dedicate a large number of physical qubits to each logical qubit. Error correction allows for deeper circuits to be run, but each additional physical qubit can potentially contribute an exponential increase in computational space, so there is a trade-off between using qubits for error correction or using them as noisy qubits. In this work we look at the effects of using noisy qubits in conjunction with noiseless qubits (an idealized model for error-corrected qubits), which we call the “clean and dirty” setup. We employ analytical models and numerical simulations to characterize this setup. Numerically we show the appearance of Noise-Induced Barren Plateaus (NIBPs), i.e., an exponential concentration of observables caused by noise, in an Ising model Hamiltonian variational ansatz circuit. We observe this even if only a single qubit is noisy and given a deep enough circuit, suggesting that NIBPs cannot be fully overcome simply by error-correcting a subset of the qubits. On the positive side, we find that for every noiseless qubit in the circuit, there is an exponential suppression in concentration of gradient observables, showing the benefit of partial error correction. Finally, our analytical models corroborate these findings by showing that observables concentrate with a scaling in the exponent related to the ratio of dirty-to-total qubits.

In a future with fault-tolerant quantum computers, a whole new world of quantum algorithms will open up which may offer advantage over many classical algorithms. This will not come without some sacrifice – the number of qubits required to encode an error corrected (or logical) qubit will be large. Adding a single qubit to a system doubles the machine’s available computational space, so in this paper we ask the question: can you combine error-corrected qubits with physical qubits? Since noise greatly impedes quantum algorithms, perhaps combining the benefits of error-correction with the additional Hilbert space afforded by non-error-corrected physical qubits may be beneficial for some classes of algorithms. We approach this question using an approximation where noiseless qubits take the place of error-corrected qubits, which we call clean; and they are coupled to noisy physical qubits, which we call dirty. We show analytically and numerically that errors in the measurement of expectation values are exponentially suppressed for each noisy qubit that is replaced with a clean qubit, and that this behavior closely follows what the machine would do had you reduced the error rate of a uniformly noisy machine by the ratio of dirty qubits to total qubits.

► BibTeX adatok

► Referenciák

[1] Richard P. Feynman. „Fizika szimulációja számítógépekkel”. International Journal of Theoretical Physics 21, 467–488 (1982).
https://​/​doi.org/​10.1007/​BF02650179

[2] Laird Egan, Dripto M Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R Brown, Marko Cetina, et al. “Fault-tolerant control of an error-corrected qubit”. Nature 598, 281–286 (2021).
https://​/​doi.org/​10.1038/​s41586-021-03928-y

[3] Peter W Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In Proceedings 35th annual symposium on foundations of computer science. Pages 124–134. Ieee (1994).
https://​/​doi.org/​10.1109/​SFCS.1994.365700

[4] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear systems of equations”. Physical Review Letters 103, 150502 (2009).
https://​/​doi.org/​10.1103/​PhysRevLett.103.150502

[5] John Preskill. „Kvantumszámítástechnika a NISQ-korszakban és azon túl”. Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[6] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio és Patrick J. Coles. „Variációs kvantum algoritmusok”. Nature Reviews Physics 3, 625–644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[7] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke és mások. „Zajos, közepes léptékű kvantumalgoritmusok”. Reviews of Modern Physics 94, 015004 (2022).
https://​/​doi.org/​10.1103/​RevModPhys.94.015004

[8] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe és Seth Lloyd. „Kvantumgépi tanulás”. Nature 549, 195–202 (2017).
https://​/​doi.org/​10.1038/​nature23474

[9] Michael A. Nielsen and Isaac L. Chuang. “Quantum computation and quantum information”. Cambridge University Press. Cambridge (2000).
https://​/​doi.org/​10.1017/​CBO9780511976667

[10] Dorit Aharonov, Michael Ben-Or, Russell Impagliazzo, and Noam Nisan. “Limitations of noisy reversible computation” (1996). url: https:/​/​doi.org/​10.48550/​arXiv.1106.6189.
https://​/​doi.org/​10.48550/​arXiv.1106.6189

[11] Michael Ben-Or, Daniel Gottesman, and Avinatan Hassidim. “Quantum refrigerator” (2013). url: https:/​/​doi.org/​10.48550/​arXiv.1301.1995.
https://​/​doi.org/​10.48550/​arXiv.1301.1995

[12] Daniel Stilck França és Raul Garcia-Patron. „Az optimalizáló algoritmusok korlátai zajos kvantumeszközökön”. Nature Physics 17, 1221–1227 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01356-3

[13] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio és Patrick J Coles. „Zaj-indukált kopár fennsíkok variációs kvantum-algoritmusokban”. Nature Communications 12, 1–11 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[14] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush és Hartmut Neven. „Kivár fennsíkok kvantum-neurális hálózatok képzési tájain”. Nature Communications 9, 1–6 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[15] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio és Patrick J Coles. „Költségfüggvénytől függő kopár platók sekély parametrizált kvantumáramkörökben”. Nature Communications 12, 1–12 (2021).
https://​/​doi.org/​10.1038/​s41467-021-21728-w

[16] Andrew Arrasmith, Zoë Holmes, Marco Cerezo és Patrick J Coles. „A kvantum-kietlen fennsíkok egyenértékűsége a költségkoncentrációval és a szűk szurdokokkal”. Quantum Science and Technology 7, 045015 (2022).
https:/​/​doi.org/​10.1088/​2058-9565/​ac7d06

[17] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio és Patrick J Coles. „A kopár fennsíkok hatása a gradiensmentes optimalizálásra”. Quantum 5, 558 (2021).
https:/​/​doi.org/​10.22331/​q-2021-10-05-558

[18] M. Cerezo és Patrick J Coles. „A meddő fennsíkokkal rendelkező kvantumneurális hálózatok magasabb rendű származékai”. Quantum Science and Technology 6, 035006 (2021).
https://​/​doi.org/​10.1088/​2058-9565/​abf51a

[19] Carlos Ortiz Marrero, Mária Kieferová és Nathan Wiebe. „Az összefonódás okozta terméketlen fennsíkok”. PRX Quantum 2, 040316 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.040316

[20] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles és M. Cerezo. „A meddő fennsíkok diagnosztizálása a Quantum Optimal Control eszközeivel”. Quantum 6, 824 (2022).
https:/​/​doi.org/​10.22331/​q-2022-09-29-824

[21] Zoë Holmes, Kunal Sharma, M. Cerezo és Patrick J Coles. „Az ansatz kifejezhetőség összekapcsolása a gradiens nagyságrendekkel és a kopár fennsíkokkal”. PRX Quantum 3, 010313 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.010313

[22] Supanut Thanasilp, Samson Wang, Nhat A Nghiem, Patrick J. Coles, and M. Cerezo. “Subtleties in the trainability of quantum machine learning models” (2021). url: https:/​/​arxiv.org/​abs/​2110.14753.
https:/​/​doi.org/​10.1007/​s42484-023-00103-6
arXiv: 2110.14753

[23] Samson Wang, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J Coles. “Can error mitigation improve trainability of noisy variational quantum algorithms?” (2021). url: https:/​/​doi.org/​10.48550/​arXiv.2109.01051.
https://​/​doi.org/​10.48550/​arXiv.2109.01051

[24] Ningping Cao, Junan Lin, David Kribs, Yiu-Tung Poon, Bei Zeng, and Raymond Laflamme. “NISQ: Error correction, mitigation, and noise simulation” (2021). url: https:/​/​doi.org/​10.48550/​arXiv.2111.02345.
https://​/​doi.org/​10.48550/​arXiv.2111.02345

[25] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram, and Frederic T Chong. “NISQ+: Boosting quantum computing power by approximating quantum error correction”. In 2020 ACM/​IEEE 47th Annual International Symposium on Computer Architecture (ISCA). Pages 556–569. IEEE (2020). url: https:/​/​doi.org/​10.1109/​ISCA45697.2020.00053.
https://​/​doi.org/​10.1109/​ISCA45697.2020.00053

[26] Yasunari Suzuki, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga. “Quantum error mitigation as a universal error reduction technique: Applications from the NISQ to the fault-tolerant quantum computing eras”. PRX Quantum 3, 010345 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.010345

[27] Emanuel Knill and Raymond Laflamme. “Power of one bit of quantum information”. Physical Review Letters 81, 5672 (1998).
https://​/​doi.org/​10.1103/​PhysRevLett.81.5672

[28] Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate, and Seiichiro Tani. “Power of Quantum Computation with Few Clean Qubits”. 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) 55, 13:1–13:14 (2016).
https://​/​doi.org/​10.4230/​LIPIcs.ICALP.2016.13

[29] Tomoyuki Morimae, Keisuke Fujii, and Harumichi Nishimura. “Power of one nonclean qubit”. Physical Review A 95, 042336 (2017).
https://​/​doi.org/​10.1103/​PhysRevA.95.042336

[30] Craig Gidney. “Factoring with n+2 clean qubits and n-1 dirty qubits” (2017). url: https:/​/​doi.org/​10.48550/​arXiv.1706.07884.
https://​/​doi.org/​10.48550/​arXiv.1706.07884

[31] Anirban N. Chowdhury, Rolando D. Somma, and Yiğit Subaşı. “Computing partition functions in the one-clean-qubit model”. Physical Review A 103, 032422 (2021).
https://​/​doi.org/​10.1103/​PhysRevA.103.032422

[32] Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate, and Seiichiro Tani. “Impossibility of classically simulating one-clean-qubit model with multiplicative error”. Physical Review Letters 120, 200502 (2018).
https://​/​doi.org/​10.1103/​PhysRevLett.120.200502

[33] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz és Wojciech Hubert Zurek. "Tökéletes kvantumhibajavító kód". Phys. Rev. Lett. 77, 198–201 (1996).
https://​/​doi.org/​10.1103/​PhysRevLett.77.198

[34] Daniel Gottesman. “An introduction to quantum error correction and fault-tolerant quantum computation”. Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics 63, 13–58 (2010).
https://​/​doi.org/​10.1090/​psapm/​068/​2762145

[35] Austin G. Fowler, Matteo Mariantoni, John M. Martinis és Andrew N. Cleland. „Felületi kódok: A gyakorlati nagyszabású kvantumszámítás felé”. Fizikai Szemle A 86, 032324 (2012).
https://​/​doi.org/​10.1103/​PhysRevA.86.032324

[36] A Yu Kitaev. “Quantum computations: algorithms and error correction”. Russian Mathematical Surveys 52, 1191 (1997).
https:/​/​doi.org/​10.1070/​RM1997v052n06ABEH002155

[37] Chris N Self, Marcello Benedetti, and David Amaro. “Protecting expressive circuits with a quantum error detection code” (2022). url: https:/​/​doi.org/​10.48550/​arXiv.2211.06703.
https://​/​doi.org/​10.48550/​arXiv.2211.06703

[38] Rolando D Somma. „Kvantum sajátérték-becslés idősor-elemzéssel”. New Journal of Physics 21, 123025 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​ab5c60

[39] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow és Jay M Gambetta. „Felügyelt tanulás kvantum-bővített jellemzőterekkel”. Nature 567, 209–212 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[40] Andrew G Taube és Rodney J Bartlett. „Új perspektívák az egységes csatolt klaszter elmélethez”. International Journal of quantum Chemistry 106, 3393–3401 (2006).
https://​/​doi.org/​10.1002/​qua.21198

[41] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T Sornborger és Patrick J Coles. „Kvantum-asszisztált kvantumfordítás”. Quantum 3, 140 (2019).
https:/​/​doi.org/​10.22331/​q-2019-05-13-140

[42] Colin J Trout, Muyuan Li, Mauricio Gutiérrez, Yukai Wu, Sheng-Tao Wang, Luming Duan, and Kenneth R Brown. “Simulating the performance of a distance-3 surface code in a linear ion trap”. New Journal of Physics 20, 043038 (2018).
https://​/​doi.org/​10.1088/​1367-2630/​aab341

[43] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, and Patrick J Coles. “Learning the quantum algorithm for state overlap”. New Journal of Physics 20, 113022 (2018).
https://​/​doi.org/​10.1088/​1367-2630/​aae94a

[44] Edward Farhi, Jeffrey Goldstone és Sam Gutmann. „A kvantumközelítő optimalizálási algoritmus” (2014). url: https://​/​doi.org/​10.48550/​arXiv.1411.4028.
https://​/​doi.org/​10.48550/​arXiv.1411.4028

[45] Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor G Rieffel, Davide Venturelli és Rupak Biswas. „A kvantumközelítő optimalizáló algoritmustól az ansatz kvantum-alternáló operátorig”. Algoritmusok 12, 34 (2019).
https://​/​doi.org/​10.3390/​a12020034

[46] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac és Nathan Killoran. „Analitikai gradiensek kiértékelése kvantumhardveren”. Physical Review A 99, 032331 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.99.032331

[47] Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar és Patrick J. Coles. „Zaj-ellenálló kvantumáramkörök gépi tanulása”. PRX Quantum 2, 010324 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010324

[48] Ryuji Takagi, Suguru Endo, Shintaro Minagawa és Mile Gu. „A kvantumhiba-csökkentés alapvető korlátai”. npj Quantum Information 8, 114 (2022).
https://​/​doi.org/​10.1038/​s41534-022-00618-z

[49] Sergey Danilin, Nicholas Nugent, and Martin Weides. “Quantum sensing with tuneable superconducting qubits: optimization and speed-up” (2022). url: https:/​/​arxiv.org/​abs/​2211.08344.
arXiv: 2211.08344

[50] Nikolai Lauk, Neil Sinclair, Shabir Barzanjeh, Jacob P Covey, Mark Saffman, Maria Spiropulu, and Christoph Simon. “Perspectives on quantum transduction”. Quantum Science and Technology 5, 020501 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​ab788a

[51] Bernhard Baumgartner. “An inequality for the trace of matrix products, using absolute values” (2011). url: https:/​/​doi.org/​10.48550/​arXiv.1106.6189.
https://​/​doi.org/​10.48550/​arXiv.1106.6189

Idézi

[1] Mikel Garcia-de-Andoin, Álvaro Saiz, Pedro Pérez-Fernández, Lucas Lamata, Izaskun Oregi, and Mikel Sanz, “Digital-Analog Quantum Computation with Arbitrary Two-Body Hamiltonians”, arXiv: 2307.00966, (2023).

[2] Abdullah Ash Saki, Amara Katabarwa, Salonik Resch és George Umbrarescu, „Hipotézisvizsgálat a hibacsökkentéshez: Hogyan értékeljük a hibacsökkentést”, arXiv: 2301.02690, (2023).

[3] Patrick J. Coles, Collin Szczepanski, Denis Melanson, Kaelan Donatella, Antonio J. Martinez és Faris Sbahi, „Thermodynamic AI and the fluktuáció határa”, arXiv: 2302.06584, (2023).

[4] M. Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio és Patrick J. Coles, „Challenges and Opportunities in Quantum Machine Learning”, arXiv: 2303.09491, (2023).

[5] Nikolaos Koukoulekidis, Samson Wang, Tom O’Leary, Daniel Bultrini, Lukasz Cincio, and Piotr Czarnik, “A framework of partial error correction for intermediate-scale quantum computers”, arXiv: 2306.15531, (2023).

A fenti idézetek innen származnak SAO/NASA HIRDETÉSEK (utolsó sikeres frissítés: 2023-07-20 03:39:12). Előfordulhat, hogy a lista hiányos, mivel nem minden kiadó ad megfelelő és teljes hivatkozási adatokat.

On Crossref által idézett szolgáltatás művekre hivatkozó adat nem található (utolsó próbálkozás 2023-07-20 03:39:11).

spot_img

Legújabb intelligencia

spot_img

Beszélj velünk

Szia! Miben segíthetek?