No menu items!

Next-Gen Data Solutions.
Vertical Search & Ai.

No menu items!

Estimating Coherent Contributions to the Error Profile Using Cycle Error Reconstruction

Date:

Arnaud Carignan-Dugas1, Shashank Kumar Ranu2,3, and Patrick Dreher4

1Keysight Technologies Canada, Kanata, ON K2K 2W5, Canada
2Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
3Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
4Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Mitigation and calibration schemes are central to maximize the computational reach of today’s Noisy Intermediate Scale Quantum (NISQ) hardware, but these schemes are often specialized to exclusively address either coherent or decoherent error sources. Quantifying the two types of errors hence constitutes a desirable feature when it comes to benchmarking error suppression tools. In this paper, we present a scalable and cycle-centric methodology for obtaining a detailed estimate of the coherent contribution to the error profile of a hard computing cycle. The protocol that we suggest is based on Cycle Error Reconstruction (CER), also known as K-body Noise Reconstruction (KNR). This protocol is similar to Cycle Benchmarking (CB) in that it provides a cycle-centric diagnostic based on Pauli fidelity estimation [1]. We introduce an additional hyper-parameter in CER by allowing the hard cycles to be folded multiple times before being subject to Pauli twirling. Performing CER for different values of our added hyper-parameter allows estimating the coherent error contributions through a generalization of the fidelity decay formula. We confirm the accuracy of our method through numerical simulations on a quantum simulator, and perform proof-of-concept experiments on three IBM chips, namely $texttt{ibmq_guadalupe}$, $texttt{ibmq_manila}$, and $texttt{ibmq_montreal}$. In all three experiments, we measure substantial coherent errors biased in Z.

â–º BibTeX data

â–º References

[1] Alexander Erhard, Joel J. Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A. Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt. Characterizing large-scale quantum computers via cycle benchmarking. Nature Communications, 10 (1), November 2019. ISSN 2041-1723. 10.1038/​s41467-019-13068-7. URL http:/​/​dx.doi.org/​10.1038/​s41467-019-13068-7.
https:/​/​doi.org/​10.1038/​s41467-019-13068-7

[2] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79. URL http:/​/​dx.doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[3] H. Y. Carr and E. M. Purcell. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Physical Review, 94 (3): 630–638, May 1954. 10.1103/​PhysRev.94.630.
https:/​/​doi.org/​10.1103/​PhysRev.94.630

[4] S. Meiboom and D. Gill. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Review of Scientific Instruments, 29 (8): 688–691, August 1958. 10.1063/​1.1716296.
https:/​/​doi.org/​10.1063/​1.1716296

[5] Lorenza Viola and Seth Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58 (4): 2733–2744, October 1998. 10.1103/​PhysRevA.58.2733.
https:/​/​doi.org/​10.1103/​PhysRevA.58.2733

[6] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical Decoupling of Open Quantum Systems. Phys. Rev. Lett., 82 (12): 2417–2421, March 1999a. 10.1103/​PhysRevLett.82.2417.
https:/​/​doi.org/​10.1103/​PhysRevLett.82.2417

[7] Lorenza Viola, Seth Lloyd, and Emanuel Knill. Universal Control of Decoupled Quantum Systems. Phys. Rev. Lett., 83 (23): 4888–4891, December 1999b. 10.1103/​PhysRevLett.83.4888.
https:/​/​doi.org/​10.1103/​PhysRevLett.83.4888

[8] Lorenza Viola and Emanuel Knill. Robust Dynamical Decoupling of Quantum Systems with Bounded Controls. Phys. Rev. Lett., 90 (3): 037901, January 2003. 10.1103/​PhysRevLett.90.037901.
https:/​/​doi.org/​10.1103/​PhysRevLett.90.037901

[9] K. Khodjasteh and D. A. Lidar. Fault-Tolerant Quantum Dynamical Decoupling. Phys. Rev. Lett., 95 (18): 180501, October 2005. 10.1103/​PhysRevLett.95.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.180501

[10] Götz S. Uhrig. Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences. Phys. Rev. Lett., 98 (10): 100504, March 2007. 10.1103/​PhysRevLett.98.100504.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.100504

[11] Jacob R. West, Daniel A. Lidar, Bryan H. Fong, and Mark F. Gyure. High Fidelity Quantum Gates via Dynamical Decoupling. Phys. Rev. Lett., 105 (23): 230503, December 2010. 10.1103/​PhysRevLett.105.230503.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.230503

[12] Wen Yang, Zhen-Yu Wang, and Ren-Bao Liu. Preserving qubit coherence by dynamical decoupling. Frontiers of Physics, 6 (1): 2–14, March 2011. 10.1007/​s11467-010-0113-8.
https:/​/​doi.org/​10.1007/​s11467-010-0113-8

[13] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7: 021050, Jun 2017. 10.1103/​PhysRevX.7.021050. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.7.021050.
https:/​/​doi.org/​10.1103/​PhysRevX.7.021050

[14] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. 10.1103/​PhysRevLett.119.180509. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.180509.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509

[15] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett., 120: 210501, May 2018. 10.1103/​PhysRevLett.120.210501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.210501.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.210501

[16] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8: 031027, Jul 2018. 10.1103/​PhysRevX.8.031027. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027

[17] Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J. Zeng. Digital zero noise extrapolation for quantum error mitigation. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 306–316, 2020. 10.1109/​QCE49297.2020.00045.
https:/​/​doi.org/​10.1109/​QCE49297.2020.00045

[18] Andre He, Benjamin Nachman, Wibe A. de Jong, and Christian W. Bauer. Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A, 102: 012426, Jul 2020. 10.1103/​PhysRevA.102.012426. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.102.012426.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012426

[19] Zhenyu Cai. Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. npj Quantum Information, 7 (1), may 2021a. 10.1038/​s41534-021-00404-3. URL https:/​/​doi.org/​10.1038.
https:/​/​doi.org/​10.1038/​s41534-021-00404-3

[20] Zhenyu Cai. A practical framework for quantum error mitigation. 2021b. 10.48550/​ARXIV.2110.05389. URL https:/​/​arxiv.org/​abs/​2110.05389.
https:/​/​doi.org/​10.48550/​ARXIV.2110.05389
arXiv:2110.05389

[21] Zhenyu Cai. Resource-efficient purification-based quantum error mitigation. 2021c. 10.48550/​ARXIV.2107.07279. URL https:/​/​arxiv.org/​abs/​2107.07279.
https:/​/​doi.org/​10.48550/​ARXIV.2107.07279
arXiv:2107.07279

[22] Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C. Benjamin, and Ying Li. Learning-based quantum error mitigation. PRX Quantum, 2: 040330, Nov 2021. 10.1103/​PRXQuantum.2.040330. URL https:/​/​link.aps.org/​doi/​10.1103/​PRXQuantum.2.040330.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040330

[23] William J. Huggins, Jarrod R. McClean, Nicholas C. Rubin, Zhang Jiang, Nathan Wiebe, K. Birgitta Whaley, and Ryan Babbush. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Information, 7 (1), feb 2021. 10.1038/​s41534-020-00341-7. URL https:/​/​doi.org/​10.1038.
https:/​/​doi.org/​10.1038/​s41534-020-00341-7

[24] Bá lint Koczor. The dominant eigenvector of a noisy quantum state. New Journal of Physics, 23 (12): 123047, dec 2021a. 10.1088/​1367-2630/​ac37ae. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1367-2630/​ac37ae

[25] Bálint Koczor. Exponential error suppression for near-term quantum devices. Phys. Rev. X, 11: 031057, Sep 2021b. 10.1103/​PhysRevX.11.031057. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.11.031057.
https:/​/​doi.org/​10.1103/​PhysRevX.11.031057

[26] Thomas E. O’Brien, Stefano Polla, Nicholas C. Rubin, William J. Huggins, Sam McArdle, Sergio Boixo, Jarrod R. McClean, and Ryan Babbush. Error mitigation via verified phase estimation. PRX Quantum, 2: 020317, May 2021. 10.1103/​PRXQuantum.2.020317. URL https:/​/​link.aps.org/​doi/​10.1103/​PRXQuantum.2.020317.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.020317

[27] Samuele Ferracin, Akel Hashim, Jean-Loup Ville, Ravi Naik, Arnaud Carignan-Dugas, Hammam Qassim, Alexis Morvan, David I. Santiago, Irfan Siddiqi, and Joel J. Wallman. Efficiently improving the performance of noisy quantum computers. 2022. 10.48550/​ARXIV.2201.10672. URL https:/​/​arxiv.org/​abs/​2201.10672.
https:/​/​doi.org/​10.48550/​ARXIV.2201.10672
arXiv:2201.10672

[28] Mingxia Huo and Ying Li. Dual-state purification for practical quantum error mitigation. Phys. Rev. A, 105: 022427, Feb 2022. 10.1103/​PhysRevA.105.022427. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.105.022427.
https:/​/​doi.org/​10.1103/​PhysRevA.105.022427

[29] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien. Quantum error mitigation. 2022. 10.48550/​ARXIV.2210.00921. URL https:/​/​arxiv.org/​abs/​2210.00921.
https:/​/​doi.org/​10.48550/​ARXIV.2210.00921
arXiv:2210.00921

[30] Tomochika Kurita, Hammam Qassim, Masatoshi Ishii, Hirotaka Oshima, Shintaro Sato, and Joseph Emerson. Synergetic quantum error mitigation by randomized compiling and zero-noise extrapolation for the variational quantum eigensolver. 2022. 10.48550/​ARXIV.2212.11198. URL https:/​/​arxiv.org/​abs/​2212.11198.
https:/​/​doi.org/​10.48550/​ARXIV.2212.11198
arXiv:2212.11198

[31] Daniel Bultrini, Max Hunter Gordon, Esperanza López, and Germán Sierra. Simple Mitigation Strategy for a Systematic Gate Error in IBMQ. arXiv e-prints, art. arXiv:2012.00831, December 2020. 10.48550/​arXiv.2012.00831.
https:/​/​doi.org/​10.48550/​arXiv.2012.00831
arXiv:2012.00831

[32] Adam Winick, Joel J. Wallman, and Joseph Emerson. Simulating and mitigating crosstalk. Physical Review Letters, 126 (23), jun 2021. 10.1103/​physrevlett.126.230502. URL https:/​/​doi.org/​10.1103.
https:/​/​doi.org/​10.1103/​physrevlett.126.230502

[33] Muhammad Ahsan, Syed Abbas Zilqurnain Naqvi, and Haider Anwer. Quantum circuit engineering for correcting coherent noise. Physical Review A, 105 (2), feb 2022. 10.1103/​physreva.105.022428. URL https:/​/​doi.org/​10.1103.
https:/​/​doi.org/​10.1103/​physreva.105.022428

[34] Arnaud Carignan-Dugas, Dar Dahlen, Ian Hincks, Egor Ospadov, Stefanie J. Beale, Samuele Ferracin, Joshua Skanes-Norman, Joseph Emerson, and Joel J. Wallman. The Error Reconstruction and Compiled Calibration of Quantum Computing Cycles. arXiv e-prints, art. arXiv:2303.17714, March 2023. 10.48550/​arXiv.2303.17714.
https:/​/​doi.org/​10.48550/​arXiv.2303.17714
arXiv:2303.17714

[35] Joel J Wallman and Steven T Flammia. Randomized benchmarking with confidence. New Journal of Physics, 16 (10): 103032, October 2014. ISSN 1367-2630. 10.1088/​1367-2630/​16/​10/​103032. URL http:/​/​dx.doi.org/​10.1088/​1367-2630/​16/​10/​103032.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​10/​103032

[36] Adam Winick, Joel J. Wallman, Dar Dahlen, Ian Hincks, Egor Ospadov, and Joseph Emerson. Concepts and conditions for error suppression through randomized compiling. 2022. 10.48550/​ARXIV.2212.07500. URL https:/​/​arxiv.org/​abs/​2212.07500.
https:/​/​doi.org/​10.48550/​ARXIV.2212.07500
arXiv:2212.07500

[37] Seth T. Merkel, Jay M. Gambetta, John a. Smolin, Stefano Poletto, Antonio D. Córcoles, Blake R. Johnson, Colm a. Ryan, and Matthias Steffen. Self-consistent quantum process tomography. Physical Review A, 87 (6): 062119, June 2013. ISSN 1050-2947. 10.1103/​PhysRevA.87.062119. URL http:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.87.062119.
https:/​/​doi.org/​10.1103/​PhysRevA.87.062119

[38] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi, Jonathan D. Sterk, and Peter Maunz. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. arXiv e-prints, art. arXiv:1310.4492, October 2013. 10.48550/​arXiv.1310.4492.
https:/​/​doi.org/​10.48550/​arXiv.1310.4492
arXiv:1310.4492

[39] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier, and Peter Maunz. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature Communications, 8 (1), feb 2017. 10.1038/​ncomms14485. URL https:/​/​doi.org/​10.1038.
https:/​/​doi.org/​10.1038/​ncomms14485

[40] Daniel Greenbaum. Introduction to quantum gate set tomography. 2015. 10.48550/​ARXIV.1509.02921. URL https:/​/​arxiv.org/​abs/​1509.02921.
https:/​/​doi.org/​10.48550/​ARXIV.1509.02921
arXiv:1509.02921

[41] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis Scholten, Kevin Young, and Robin Blume-Kohout. Gate set tomography. Quantum, 5: 557, oct 2021. 10.22331/​q-2021-10-05-557. URL https:/​/​doi.org/​10.22331.
https:/​/​doi.org/​10.22331/​q-2021-10-05-557

[42] Raphael Brieger, Ingo Roth, and Martin Kliesch. Compressive gate set tomography. 2021. 10.48550/​ARXIV.2112.05176. URL https:/​/​arxiv.org/​abs/​2112.05176.
https:/​/​doi.org/​10.48550/​ARXIV.2112.05176
arXiv:2112.05176

[43] Steven T. Flammia and Joel J. Wallman. Efficient estimation of Pauli channels. arXiv e-prints, art. arXiv:1907.12976, July 2019. 10.48550/​arXiv.1907.12976.
https:/​/​doi.org/​10.48550/​arXiv.1907.12976
arXiv:1907.12976

[44] Jonas Helsen, Joel J. Wallman, Steven T. Flammia, and Stephanie Wehner. Multiqubit randomized benchmarking using few samples. Phys. Rev. A, 100: 032304, Sep 2019. 10.1103/​PhysRevA.100.032304. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.100.032304.
https:/​/​doi.org/​10.1103/​PhysRevA.100.032304

[45] Arnaud Carignan-Dugas, Dar Dahlen, Ian Hincks, Egor Ospadov, Stefanie J. Beale, Samuele Ferracin, Joshua Skanes-Norman, Joseph Emerson, and Joel Wallman. The learning and compiled calibration of cycle errors in quantum computing architectures. In APS March Meeting, 2022.

[46] Joel J. Wallman. Systems and methods for reconstructing noise from pauli fidelities, November 17 U.S. patent 10838792, Nov. 2020. URL https:/​/​patents.justia.com/​patent/​10838792.
https:/​/​patents.justia.com/​patent/​10838792

[47] Ziang Yu and Yingzhou Li. Analysis of Error Propagation in Quantum Computers. arXiv e-prints, art. arXiv:2209.01699, September 2022. 10.48550/​arXiv.2209.01699.
https:/​/​doi.org/​10.48550/​arXiv.2209.01699
arXiv:2209.01699

[48] G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (2): 119 – 130, 1976. 10.1007/​BF01608499. URL https:/​/​doi.org/​10.1007/​BF01608499.
https:/​/​doi.org/​10.1007/​BF01608499

[49] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[50] Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94 (5): 052325, November 2016. 10.1103/​PhysRevA.94.052325.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052325

[51] Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P. O’Brien, Ian Hincks, Joel J. Wallman, Joseph Emerson, and Irfan Siddiqi. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X, 11: 041039, Nov 2021. 10.1103/​PhysRevX.11.041039. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.11.041039.
https:/​/​doi.org/​10.1103/​PhysRevX.11.041039

[52] Jean-Loup Ville, Alexis Morvan, Akel Hashim, Ravi K. Naik, Marie Lu, Bradley Mitchell, John-Mark Kreikebaum, Kevin P. O’Brien, Joel J. Wallman, Ian Hincks, Joseph Emerson, Ethan Smith, Ed Younis, Costin Iancu, David I. Santiago, and Irfan Siddiqi. Leveraging randomized compiling for the quantum imaginary-time-evolution algorithm. Physical Review Research, 4 (3), August 2022. ISSN 2643-1564. 10.1103/​physrevresearch.4.033140. URL http:/​/​dx.doi.org/​10.1103/​PhysRevResearch.4.033140.
https:/​/​doi.org/​10.1103/​physrevresearch.4.033140

[53] Yanwu Gu, Yunheng Ma, Nicolò Forcellini, and Dong E. Liu. Noise-Resilient Phase Estimation with Randomized Compiling. Phys. Rev. Lett., 130 (25): 250601, June 2023. 10.1103/​PhysRevLett.130.250601.
https:/​/​doi.org/​10.1103/​PhysRevLett.130.250601

[54] Adam Winick, Joel J. Wallman, Dar Dahlen, Ian Hincks, Egor Ospadov, and Joseph Emerson. Concepts and conditions for error suppression through randomized compiling. arXiv e-prints, art. arXiv:2212.07500, December 2022. 10.48550/​arXiv.2212.07500.
https:/​/​doi.org/​10.48550/​arXiv.2212.07500
arXiv:2212.07500

[55] Brian C Hall. Lie Groups, Lie Algebras, and Representations An Elementary Introduction. Springer. ISBN 978-3-319-13466-6. https:/​/​doi.org/​10.1007/​978-3-319-13467-3. URL https:/​/​link.springer.com/​book/​10.1007/​978-3-319-13467-3.
https:/​/​doi.org/​10.1007/​978-3-319-13467-3

[56] Easwar Magesan and Jay M. Gambetta. Effective hamiltonian models of the cross-resonance gate. Physical Review A, 101 (5), May 2020. ISSN 2469-9934. 10.1103/​physreva.101.052308. URL http:/​/​dx.doi.org/​10.1103/​PhysRevA.101.052308.
https:/​/​doi.org/​10.1103/​physreva.101.052308

[57] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17: 261–272, 2020. 10.1038/​s41592-019-0686-2.
https:/​/​doi.org/​10.1038/​s41592-019-0686-2

[58] Robin Harper, Ian Hincks, Chris Ferrie, Steven T. Flammia, and Joel J. Wallman. Statistical analysis of randomized benchmarking. arXiv e-prints, art. arXiv:1901.00535, January 2019. 10.48550/​arXiv.1901.00535.
https:/​/​doi.org/​10.48550/​arXiv.1901.00535
arXiv:1901.00535

[59] Noah Goss, Samuele Ferracin, Akel Hashim, Arnaud Carignan-Dugas, John Mark Kreikebaum, Ravi K. Naik, David I. Santiago, and Irfan Siddiqi. Extending the Computational Reach of a Superconducting Qutrit Processor. arXiv e-prints, art. arXiv:2305.16507, May 2023. 10.48550/​arXiv.2305.16507.
https:/​/​doi.org/​10.48550/​arXiv.2305.16507
arXiv:2305.16507

[60] Akhil Francis, J. K. Freericks, and A. F. Kemper. Quantum computation of magnon spectra. Phys. Rev. B, 101 (1): 014411, January 2020. 10.1103/​PhysRevB.101.014411.
https:/​/​doi.org/​10.1103/​PhysRevB.101.014411

[61] S.A. Glantz, B.K. Slinker, and T.B. Neilands. Primer of Applied Regression & Analysis of Variance 3E. McGraw Hill LLC, 2016. ISBN 9780071822442. URL https:/​/​books.google.com/​books?id=E73NCwAAQBAJ.
https:/​/​books.google.com/​books?id=E73NCwAAQBAJ

[62] Vinay Tripathi, Huo Chen, Mostafa Khezri, Ka-Wa Yip, E.M. Levenson-Falk, and Daniel A. Lidar. Suppression of crosstalk in superconducting qubits using dynamical decoupling. Physical Review Applied, 18 (2), August 2022. ISSN 2331-7019. 10.1103/​physrevapplied.18.024068. URL http:/​/​dx.doi.org/​10.1103/​PhysRevApplied.18.024068.
https:/​/​doi.org/​10.1103/​physrevapplied.18.024068

[63] Peng Zhao, Kehuan Linghu, Zhiyuan Li, Peng Xu, Ruixia Wang, Guangming Xue, Yirong Jin, and Haifeng Yu. Quantum Crosstalk Analysis for Simultaneous Gate Operations on Superconducting Qubits. PRX Quantum, 3 (2): 020301, April 2022. 10.1103/​PRXQuantum.3.020301.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020301

[64] Junling Long, Tongyu Zhao, Mustafa Bal, Ruichen Zhao, George S. Barron, Hsiang-sheng Ku, Joel A. Howard, Xian Wu, Corey Rae H. McRae, Xiu-Hao Deng, Guilhem J. Ribeill, Meenakshi Singh, Thomas A. Ohki, Edwin Barnes, Sophia E. Economou, and David P. Pappas. A universal quantum gate set for transmon qubits with strong ZZ interactions. arXiv e-prints, art. arXiv:2103.12305, March 2021. 10.48550/​arXiv.2103.12305.
https:/​/​doi.org/​10.48550/​arXiv.2103.12305
arXiv:2103.12305

[65] Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory of Majorization and its Applications, volume 143. Springer, second edition, 2011. 10.1007/​978-0-387-68276-1.
https:/​/​doi.org/​10.1007/​978-0-387-68276-1

[66] Stefanie J. Beale, Kristine Boone, Arnaud Carignan-Dugas, Anthony Chytros, Dar Dahlen, Hillary Dawkins, Joseph Emerson, Samuele Ferracin, Virginia Frey, Ian Hincks, David Hufnagel, Pavithran Iyer, Aditya Jain, Jason Kolbush, Egor Ospadov, José Luis Pino, Hammam Qassim, Jordan Saunders, Joshua Skanes-Norman, Andrew Stasiuk, Joel J. Wallman, Adam Winick, and Emily Wright. True-q, June 2020. URL https:/​/​doi.org/​10.5281/​zenodo.3945250.
https:/​/​doi.org/​10.5281/​zenodo.3945250

[67] Andrew Wack, Hanhee Paik, Ali Javadi-Abhari, Petar Jurcevic, Ismael Faro, Jay M. Gambetta, and Blake R. Johnson. Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers. arXiv e-prints, art. arXiv:2110.14108, October 2021. 10.48550/​arXiv.2110.14108.
https:/​/​doi.org/​10.48550/​arXiv.2110.14108
arXiv:2110.14108

Cited by

[1] Jader P. Santos, Ivan Henao, and Raam Uzdin, “Scalable evaluation of incoherent infidelity in quantum devices”, arXiv:2305.19359, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-14 13:24:00). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2024-06-14 13:23:58).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?