Plato Data Intelligence.
Vertical Search & Ai.

Double-bracket quantum algorithms for diagonalization

Date:

Marek Gluza

School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Republic of Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

This work proposes double-bracket iterations as a framework for obtaining diagonalizing quantum circuits. Their implementation on a quantum computer consists of interlacing evolutions generated by the input Hamiltonian with diagonal evolutions which can be chosen variationally. No qubit overheads or controlled-unitary operations are needed but the method is recursive which makes the circuit depth grow exponentially with the number of recursion steps. To make near-term implementations viable, the proposal includes optimization of diagonal evolution generators and of recursion step durations. Indeed, thanks to this numerical examples show that the expressive power of double-bracket iterations suffices to approximate eigenstates of relevant quantum models with few recursion steps. Compared to brute-force optimization of unstructured circuits double-bracket iterations do not suffer from the same trainability limitations. Moreover, with an implementation cost lower than required for quantum phase estimation they are more suitable for near-term quantum computing experiments. More broadly, this work opens a pathway for constructing purposeful quantum algorithms based on so-called double-bracket flows also for tasks different from diagonalization and thus enlarges the quantum computing toolkit geared towards practical physics problems.

A method for preparing on a quantum computer states of complicated materials.

► BibTeX data

► References

[1] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. “Noisy intermediate-scale quantum algorithms”. Rev. Mod. Phys. 94, 015004 (2022).
https:/​/​doi.org/​10.1103/​RevModPhys.94.015004

[2] Lennart Bittel and Martin Kliesch. “Training variational quantum algorithms is np-hard”. Phys. Rev. Lett. 127, 120502 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.120502

[3] Daniel Stilck Franca and Raul Garcia-Patron. “Limitations of optimization algorithms on noisy quantum devices”. Nature Physics 17, 1221–1227 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01356-3

[4] Cornelius Lanczos. “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators”. Journal of Research of the National Bureau of Standards 45 (1950).
https:/​/​doi.org/​10.6028/​jres.045.026

[5] Mario Motta, Chong Sun, Adrian TK Tan, Matthew J O’Rourke, Erika Ye, Austin J Minnich, Fernando GSL Brandao, and Garnet Kin Chan. “Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution”. Nature Physics 16, 205–210 (2020).
https:/​/​doi.org/​10.1038/​s41567-019-0704-4

[6] Christian Kokail, Christine Maier, Rick van Bijnen, Tiff Brydges, Manoj K Joshi, Petar Jurcevic, Christine A Muschik, Pietro Silvi, Rainer Blatt, Christian F Roos, et al. “Self-verifying variational quantum simulation of lattice models”. Nature 569, 355–360 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1177-4

[7] Stanisław D. Głazek and Kenneth G. Wilson. “Renormalization of hamiltonians”. Phys. Rev. D 48, 5863–5872 (1993).
https:/​/​doi.org/​10.1103/​PhysRevD.48.5863

[8] Stanislaw D. Glazek and Kenneth G. Wilson. “Perturbative renormalization group for hamiltonians”. Phys. Rev. D 49, 4214–4218 (1994).
https:/​/​doi.org/​10.1103/​PhysRevD.49.4214

[9] Franz Wegner. “Flow-equations for hamiltonians”. Annalen der physik 506, 77–91 (1994).
https:/​/​doi.org/​10.1002/​andp.19945060203

[10] S Kehrein. “The flow equation approach to many-particle systems”. Springer Tracts Mod. Phys. 217, 1–170 (2006).
https:/​/​doi.org/​10.1007/​3-540-34068-8

[11] Franz Wegner. “Flow equations and normal ordering: a survey”. Journal of Physics A: Mathematical and General 39, 8221 (2006).
https:/​/​doi.org/​10.1088/​0305-4470/​39/​25/​s29

[12] Percy Deift, Tara Nanda, and Carlos Tomei. “Ordinary differential equations and the symmetric eigenvalue problem”. SIAM Journal on Numerical Analysis 20, 1–22 (1983).
https:/​/​doi.org/​10.1137/​0720001

[13] R.W. Brockett. “Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems”. Linear Algebra and its Applications 146, 79–91 (1991).

[14] Moody T. Chu. “On the continuous realization of iterative processes”. SIAM Review 30, 375–387 (1988). url: http:/​/​www.jstor.org/​stable/​2030697.
http:/​/​www.jstor.org/​stable/​2030697

[15] Uwe Helmke and John B. Moore. “Optimization and dynamical systems”. Springer London. (1994).
https:/​/​doi.org/​10.1007/​978-1-4471-3467-1

[16] Andrew M. Childs and Yuan Su. “Nearly optimal lattice simulation by product formulas”. Phys. Rev. Lett. 123, 050503 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.050503

[17] Esteban A Martinez, Christine A Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, et al. “Real-time dynamics of lattice gauge theories with a few-qubit quantum computer”. Nature 534, 516–519 (2016).
https:/​/​doi.org/​10.1038/​nature18318

[18] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B Buckley, et al. “Hartree-fock on a superconducting qubit quantum computer”. Science 369, 1084–1089 (2020).
https:/​/​doi.org/​10.1126/​science.abb9811

[19] Frank HB Somhorst, Reinier van der Meer, Malaquias Correa Anguita, Riko Schadow, Henk J Snijders, Michiel de Goede, Ben Kassenberg, Pim Venderbosch, Caterina Taballione, JP Epping, et al. “Quantum simulation of thermodynamics in an integrated quantum photonic processor”. Nature communications 14, 3895 (2023).
https:/​/​doi.org/​10.1038/​s41467-023-38413-9

[20] Jeongrak Son, Marek Gluza, Ryuji Takagi, and Nelly HY Ng. “Quantum dynamic programming” (2024). arXiv:2403.09187.
arXiv:2403.09187

[21] Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. “Colloquium: Quantum coherence as a resource”. Rev. Mod. Phys. 89, 041003 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.041003

[22] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. “Qibo: a framework for quantum simulation with hardware acceleration”. Quantum Science and Technology 7, 015018 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[23] Michael A Nielsen and Isaac L Chuang. “Quantum computation and quantum information”. Cambridge University Press. (2010).

[24] JB Moore, RE Mahony, and U Helmke. “Numerical gradient algorithms for eigenvalue and singular value calculations”. SIAM Journal on Matrix Analysis and Applications 15, 881–902 (1994).
https:/​/​doi.org/​10.1137/​S0036141092229732

[25] R Brockett. “Dynamical systems that sort lists, solve linear programming problems and diagonalize symmetric matrices”. In Proc. 1988 IEEE Conference on Decision and Control, Linear Algebra Appl. Volume 146, pages 79–91. (1991).

[26] R Brockett. “Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems”. Linear Algebra and its applications 146, 79–91 (1991).
https:/​/​doi.org/​10.1016/​0024-3795(91)90021-N

[27] Steven Thomas Smith. “Geometric optimization methods for adaptive filtering”. Harvard University. (1993).
https:/​/​doi.org/​10.48550/​arXiv.1305.1886

[28] Christopher M Dawson and Michael A Nielsen. “The solovay-kitaev algorithm”. Quantum Information & Computation 6, 81–95 (2006).
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​0505030
arXiv:quant-ph/0505030

[29] Yu-An Chen, Andrew M. Childs, Mohammad Hafezi, Zhang Jiang, Hwanmun Kim, and Yijia Xu. “Efficient product formulas for commutators and applications to quantum simulation”. Phys. Rev. Res. 4, 013191 (2022).
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.013191

[30] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. “Gate-count estimates for performing quantum chemistry on small quantum computers”. Phys. Rev. A 90, 022305 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.022305

[31] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. “Theory of trotter error with commutator scaling”. Phys. Rev. X 11, 011020 (2021).
https:/​/​doi.org/​10.1103/​PhysRevX.11.011020

[32] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. “Simulating hamiltonian dynamics with a truncated taylor series”. Phys. Rev. Lett. 114, 090502 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[33] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitization”. Quantum 3, 163 (2019).
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

[34] John Watrous. “The theory of quantum information”. Cambridge University Press. (2018).
https:/​/​doi.org/​10.1017/​9781316848142

[35] Pierre Pfeuty. “The one-dimensional ising model with a transverse field”. Ann. Phys. 57, 79 – 90 (1970).
https:/​/​doi.org/​10.1016/​0003-4916(70)90270-8

[36] Lin Lin and Yu Tong. “Near-optimal ground state preparation”. Quantum 4, 372 (2020).
https:/​/​doi.org/​10.22331/​q-2020-12-14-372

[37] Andrew M Childs and Robin Kothari. “Limitations on the simulation of non-sparse hamiltonians”. Quantum Information & Computation 10, 669–684 (2010).
https:/​/​doi.org/​10.26421/​QIC10.7-8

[38] Matthew B Hastings. “On Lieb-Robinson bounds for the double bracket flow” (2022). arXiv:2201.07141.
arXiv:2201.07141

[39] Yichen Huang. “Universal eigenstate entanglement of chaotic local hamiltonians”. Nuclear Physics B 938, 594–604 (2019).
https:/​/​doi.org/​10.1016/​j.nuclphysb.2018.09.013

[40] Elliott H Lieb and Derek W Robinson. “The finite group velocity of quantum spin systems”. In Statistical Mechanics. Pages 425–431. Springer (1972).

[41] Bruno Nachtergaele, Robert Sims, and Amanda Young. “Quasi-locality bounds for quantum lattice systems. i. lieb-robinson bounds, quasi-local maps, and spectral flow automorphisms”. Journal of Mathematical Physics 60, 061101 (2019).
https:/​/​doi.org/​10.1063/​1.5095769

[42] Tomotaka Kuwahara and Keiji Saito. “Eigenstate thermalization from the clustering property of correlation”. Phys. Rev. Lett. 124, 200604 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.200604

[43] Fernando GSL Brandao, Elizabeth Crosson, M Burak Sahinoglu, and John Bowen. “Quantum error correcting codes in eigenstates of translation-invariant spin chains”. Phys. Rev. Lett. 123, 110502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.110502

[44] Álvaro M. Alhambra, Jonathon Riddell, and Luis Pedro García-Pintos. “Time evolution of correlation functions in quantum many-body systems”. Phys. Rev. Lett. 124, 110605 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110605

[45] Michael M. Wolf, Frank Verstraete, Matthew B. Hastings, and J. Ignacio Cirac. “Area laws in quantum systems: Mutual information and correlations”. Phys. Rev. Lett. 100, 070502 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.070502

[46] David Pekker, Bryan K. Clark, Vadim Oganesyan, and Gil Refael. “Fixed points of wegner-wilson flows and many-body localization”. Phys. Rev. Lett. 119, 075701 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.075701

[47] Steven J. Thomson and Marco Schirò. “Local integrals of motion in quasiperiodic many-body localized systems”. SciPost Phys. 14, 125 (2023).
https:/​/​doi.org/​10.21468/​SciPostPhys.14.5.125

[48] Ryan LaRose, Arkin Tikku, Étude O’Neel-Judy, Lukasz Cincio, and Patrick J Coles. “Variational quantum state diagonalization”. npj Quantum Information 5, 1–10 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0167-6

[49] Jinfeng Zeng, Chenfeng Cao, Chao Zhang, Pengxiang Xu, and Bei Zeng. “A variational quantum algorithm for hamiltonian diagonalization”. Quantum Science and Technology 6, 045009 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac11a7

[50] Benjamin Commeau, Marco Cerezo, Zoë Holmes, Lukasz Cincio, Patrick J Coles, and Andrew Sornborger. “Variational hamiltonian diagonalization for dynamical quantum simulation” (2020). arXiv:2009.02559.
arXiv:2009.02559

[51] Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J Coles, and Andrew Sornborger. “Variational fast forwarding for quantum simulation beyond the coherence time”. npj Quantum Information 6, 82 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00302-0

[52] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J Coles, and Andrew Sornborger. “Long-time simulations for fixed input states on quantum hardware”. npj Quantum Information 8, 135 (2022).
https:/​/​doi.org/​10.1038/​s41534-022-00625-0

[53] Roeland Wiersema and Nathan Killoran. “Optimizing quantum circuits with riemannian gradient flow”. Phys. Rev. A 107, 062421 (2023).
https:/​/​doi.org/​10.1103/​PhysRevA.107.062421

[54] Emanuel Knill, Gerardo Ortiz, and Rolando D. Somma. “Optimal quantum measurements of expectation values of observables”. Phys. Rev. A 75, 012328 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.012328

[55] David Poulin and Pawel Wocjan. “Sampling from the thermal quantum gibbs state and evaluating partition functions with a quantum computer”. Phys. Rev. Lett. 103, 220502 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.220502

[56] Kristan Temme, Tobias J Osborne, Karl G Vollbrecht, David Poulin, and Frank Verstraete. “Quantum metropolis sampling”. Nature 471, 87–90 (2011).
https:/​/​doi.org/​10.1038/​nature09770

[57] Yimin Ge, Jordi Tura, and J Ignacio Cirac. “Faster ground state preparation and high-precision ground energy estimation with fewer qubits”. Journal of Mathematical Physics 60, 022202 (2019).
https:/​/​doi.org/​10.1063/​1.5027484

[58] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics”. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Pages 193–204. (2019).
https:/​/​doi.org/​10.1145/​3313276.3316366

[59] Kok Chuan Tan, Dhiman Bowmick, and Pinaki Sengupta. “Quantum stochastic series expansion methods” (2020). arXiv:2010.00949.
arXiv:2010.00949

[60] Yulong Dong, Lin Lin, and Yu Tong. “Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices” (2022). arXiv:2204.05955.
arXiv:2204.0595

[61] Lin Lin and Yu Tong. “Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers”. PRX Quantum 3, 010318 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010318

[62] Ethan N Epperly, Lin Lin, and Yuji Nakatsukasa. “A theory of quantum subspace diagonalization” (2021). arXiv:2110.07492.
https:/​/​doi.org/​10.1088/​1361-6455/​ac44e0
arXiv:2110.07492

[63] A Yu Kitaev. “Quantum measurements and the abelian stabilizer problem” (1995). arXiv:quant-ph/​9511026.
arXiv:quant-ph/9511026

[64] Lin Lin. “Lecture notes on quantum algorithms for scientific computation” (2022). arXiv:2201.08309.
arXiv:2201.08309

[65] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. “Quantum amplitude amplification and estimation”. Contemporary Mathematics 305, 53–74 (2002).
https:/​/​doi.org/​10.1090/​conm/​305/​05215

[66] Robert M Parrish and Peter L McMahon. “Quantum filter diagonalization: Quantum eigendecomposition without full quantum phase estimation” (2019). arXiv:1909.08925.
arXiv:1909.08925

[67] Nicholas H Stair, Renke Huang, and Francesco A Evangelista. “A multireference quantum krylov algorithm for strongly correlated electrons”. Journal of chemical theory and computation 16, 2236–2245 (2020).
https:/​/​doi.org/​10.1021/​acs.jctc.9b01125

[68] Gene Golub and William Kahan. “Calculating the singular values and pseudo-inverse of a matrix”. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2, 205–224 (1965).
https:/​/​doi.org/​10.1137/​0702016

[69] R.W. Brockett. “Least squares matching problems”. Linear Algebra and its Applications 122-124, 761–777 (1989).
https:/​/​doi.org/​10.1016/​0024-3795(89)90675-7

[70] Roger W Brockett. “Smooth dynamical systems which realize arithmetical and logical operations”. Three Decades of Mathematical System Theory: A Collection of Surveys at the Occasion of the 50th Birthday of Jan C. WillemsPages 19–30 (2005).
https:/​/​doi.org/​10.1007/​BFb0008457

[71] Anthony M Bloch. “A completely integrable hamiltonian system associated with line fitting in complex vector spaces”. Bull. Amer. Math. Soc. (1985).

[72] Anthony Bloch. “Estimation, principal components and hamiltonian systems”. Systems & Control Letters 6, 103–108 (1985).

[73] Anthony M Bloch. “Steepest descent, linear programming and hamiltonian flows”. Contemp. Math. AMS 114, 77–88 (1990).
https:/​/​doi.org/​10.1090/​conm/​114

[74] Anthony M Bloch, Roger W Brockett, and Tudor S Ratiu. “Completely integrable gradient flows”. Communications in Mathematical Physics 147, 57–74 (1992).
https:/​/​doi.org/​10.1007/​BF02099528

[75] Nic Ezzell, Bibek Pokharel, Lina Tewala, Gregory Quiroz, and Daniel A Lidar. “Dynamical decoupling for superconducting qubits: a performance survey” (2022). arXiv:2207.03670.
https:/​/​doi.org/​10.1103/​PhysRevApplied.20.064027
arXiv:2207.03670

[76] Rajendra Bhatia. “Matrix analysis”. Volume 169. Springer Science & Business Media. (1996).
https:/​/​doi.org/​10.1007/​978-1-4612-0653-8

[77] Steven T. Flammia and Yi-Kai Liu. “Direct fidelity estimation from few pauli measurements”. Phys. Rev. Lett. 106, 230501 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.106.230501

[78] Marek Gluza. url: github.com/​marekgluza/​double_bracket_flow_as_a_diagonalization_quantum_algorithm.
https:/​/​github.com/​marekgluza/​double_bracket_flow_as_a_diagonalization_quantum_algorithm

[79] “Scientific co2nduct”. url: scientific-conduct.github.io.
https:/​/​scientific-conduct.github.io

[80] Morris W Hirsch, Stephen Smale, and Robert L Devaney. “Differential equations, dynamical systems, and an introduction to chaos”. Academic press. (2012).

Cited by

[1] Jeongrak Son, Marek Gluza, Ryuji Takagi, and Nelly H. Y. Ng, “Quantum Dynamic Programming”, arXiv:2403.09187, (2024).

[2] Michael Kreshchuk, James P. Vary, and Peter J. Love, “Simulating Scattering of Composite Particles”, arXiv:2310.13742, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-04-10 01:36:18). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2024-04-10 01:36:16).

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?