Connect with us

Blockchain

Blockchain Consensus Mechanisms – Proof of Work vs Proof of Stake and More

Blockchain Consensus

A blockchain is a decentralized peer-to-peer network that stores append-only (add to the end of) data and verifies the integrity of that information across the network. Collectively validating the accuracy of said data (reaching consensus) is one of the defining features of a blockchain. The idea of a blockchain goes back to at least the…

The post Blockchain Consensus Mechanisms – Proof of Work vs Proof of Stake and More appeared first on UNHASHED.

Published

on

A blockchain is a decentralized peer-to-peer network that stores append-only (add to the end of) data and verifies the integrity of that information across the network. Collectively validating the accuracy of said data (reaching consensus) is one of the defining features of a blockchain.

The idea of a blockchain goes back to at least the 1990s. The basic theory was to copy data across a network of computers using a type of consensus algorithm to agree on any data to be added. Then, use cryptographic hash-chaining to make the database virtually immutable.

For more information on blockchains and hashing, check out our Blockchain article. Below, however, we’ll focus specifically on the various ways that different types of blockchains reach consensus on data added to their sequences (chains) of data (blocks) through these topics:

The main differences in the various blockchain consensus mechanisms center around how the right to add data to the blockchain is distributed among network participants, and how this data is validated by the network as an accurate account of transactions.

The set of computer processes that solve these problems is called the consensus algorithm, which, as alluded to, is the mechanism responsible for securely updating the state of data across a given blockchain network.

Each node (computer) in the network independently verifies and processes every transaction and therefore must have access to the database’s current state, the modification requested by a given transaction and a digital signature proving a transaction’s origin and accuracy. The question then, is how all of the nodes reach consensus (agreement) on the data. The biggest problem that blockchains aim to solve is called the “Byzantine Generals’ Problem”.

This problem, which has been around for longer than blockchain itself, is basically this: How do you keep a network of entities who are focused on the same goal in alignment based purely on messages passed between them, without the information being corrupted by a malicious actor within the network? For example, if one is trying to send cryptocurrency through a network, how can you be certain that the transaction details haven’t been tampered with and changed by a malicious node in the network?

This is where a consensus mechanism comes in to make sure the network remains in sync and data remains untampered with. The following are a few of the solutions different groups have come up with to achieve this outcome.

Proof of work is presently the most popular consensus mechanism for blockchains. The ‘proof of work’ that the name describes is the process by which the blockchain network proves that a miner network node (network nodes that group transactions into blocks and validate them) has done the work needed to create a valid block (group of transactions). Although it’s hard for nodes to generate a valid block (it takes a lot of computer processing power), it is quite easy for the network to verify that a block is valid.

This is all done through what is called a hash function, which creates a unique digital fingerprint for a given piece of data. Since hashes are very sensitive to change, and even a tiny modification will result in a completely different hash output, hashes can be used to validate and secure blocks.

For a block to be confirmed as valid, miners must create two hashes: a hash of all of the transactions in the block, and a hash proving they have expended the energy needed to generate the block by solving a special cryptographic puzzle with a pre-set level of difficulty. Specifically, the puzzle is to find a number that, when combined with the data in the transactions and passed through the hash algorithm, comes up with a number within a specified range set by the cryptocurrency’s program.

The difficulty of solving the puzzle is automatically adjusted in PoW systems to create a consistent time period for blocks of transactions to be added to the blockchain and to release network fees and newly created cryptocurrency rewards to miners.

A hash is a one-way function. It cannot be reversed. In this way, it can be confirmed that each block has required work to generate it. Each block also contains the hash of the previous block, so once all blocks are combined in the blockchain, it makes it virtually impossible to modify them since doing so would require redoing all the work done to generate every single block in the blockchain.

In summary, a miner creates a block of valid transactions, then runs the PoW algorithm on it to find a valid hash, racing against all other miners to solve the puzzle first. When a valid block is generated through such action, the block is added to the blockchain and the miner receives network fees as well as newly created cryptocurrency.

There are different hashing algorithms used for PoW consensus mechanisms, the most common of which are SHA-256 (e.g Bitcoin) and Scrypt (e.g. Litecoin). Others include SHA-3, CryptoNight, Blake-256, Quark, scrypt-jane and hybrid systems that use more than one hashing function.

Although PoW is theoretically near impossible to hack since it uses resources in the physical world to secure the network, this is also where one of its largest criticisms comes from: the resource being used is electricity, and lots of it.

In fact, science magazine Motherboard Vice, reports that 1.6 U.S. households could be powered for a day by the electricity used by a single Bitcoin transaction. By 2020, Bitcoin could consume as much electricity as the entire country of Denmark. And that’s just one cryptocurrency (albeit the most popular).

From an efficiency and environmental perspective, this is not ideal and would be very difficult to scale to mainstream usage. Making matters worse, the computing power and electricity costs needed to stay competitive in mining has increased dramatically over time. This has produced significant centralization in mining networks, as only the largest and most powerful organizations can really compete.

A few large companies and mining pools now dominate the most popular blockchains, which is completely counter to the founding decentralization principle of blockchains.

Besides the questionable ethics of this issue, centralization also leads to a potential security problem called a 51% attack. This is when a miner, likely a pool or large conglomerate, controls 51% of a blockchain network’s computing power. If this were ever to happen, they could disrupt the entire network by invalidating real transactions or validating their own fraudulent transactions to “double spend” funds (using the same funds more than once).

Fortunately, these problems with PoW are not without potential solutions.

PoS is based on the assumption that when nodes in the network are stakeholders (that is, when they own currency of the given blockchain) they will have an incentive to remain honest and benign in operating network nodes.

PoS works by miners locking up some of their own cryptocurrency so they can’t be used into special ‘staked’ accounts. Nodes who have staked tokens can then verify blocks of transactions just as in PoW systems, but the cryptographic calculations needed to verify blocks are much simpler (and therefore require much less computer power). Instead of using complicated puzzles that give advantages to more powerful computers as in PoW, PoS systems are structured such that nodes that have more cryptocurrency staked have a higher chance of solving the cryptographic puzzle.

In this way, although PoS is more efficient than PoW, it does not completely solve the problem of centralization of mining power, since logically, the risk is that the currency used by such systems will still concentrate into fewer and fewer hands.

One of the other key problems of PoS is the ‘nothing at stake’ problem, wherein miners may have nothing to lose by voting for multiple blockchain histories in the event of a fork (a blockchain split into two). In the event of a fork, the most lucrative strategy for a miner is to mine on each chain, therefore gaining rewards regardless of which fork is recognized by the network.

This could in theory lead to consensus never being reached by the network, or to double spending wherein an attacker may be able to send a transaction, then start a fork of the blockchain from one block behind the transaction and send the money to themselves instead of where it was sent before. This is more possible in a PoS system than PoW since the cost of working on several chains is much lower.

One problem that PoS does help to mitigate, however, is the 51% problem. Even if a miner owned 51% of a cryptocurrency, it would not be in their interest to attack a system in which they owned a majority of the stake. This does not, of course, take into account malicious, well funded actors who may simply want to bring down a blockchain network at any cost.

Some examples of blockchains using this consensus mechanism are NEO, Stellar and Cardano.

With classic PoS, miners with small balances are unlikely to mine a block, in the same way that PoW miners with little computer power are unlikely to mine a block. Not only could this be seen as less fair, it may also lead to a less secure network, since if small miners were incentivized better, the network would have more nodes and thus be more secure.

LPoS incentivizes less powerful nodes by allowing them to lease their cryptocurrency balances to “staking nodes” that have more staked tokens and are consequently more likely to mine a valid block. All coins leased to such nodes increase the “weight” of the staking node, which increases its chances of adding a block to the blockchain. Rewards received by staking nodes are then proportionally shared between all leasers. Leasers can still move or spend their tokens at any time, thus automatically “breaking the lease” so to speak.

In this way, the issue of centralization of mining and/or monetary power can be better limited by allowing all nodes to have the potential to earn mining rewards.

The main example of a project using this type of consensus algorithm is Waves.

In DPoS, cryptocurrency token holders use their balances to elect a list of nodes that will be able to stake blocks to add to the blockchain. With the yet-to-launch EOS blockchain, for example, there will be 21 “block producer nodes” that are elected by the network.

Although this solves some problems, such as the potential for forks to happen (all nodes will not switch to a fork that isn’t finalized by 15 out of 21 producer nodes), and scalability issues that occur with PoW and PoS, a DPoS blockchain is by definition more centralized, and does not provide accessible entry points for anyone to mine blocks and earn rewards.

Projects that use this type of consensus mechanism include Bitshares and EOS.

Blockchains don’t have to settle for just one type of consensus mechanism. The most popular type of hybrid chain is the PoW/PoS hybrid, which typically uses an initial PoW consensus in a limited manner, and then uses PoS to validate blocks added to the blockchain. Using PoS solves the 51% attack problem while using less energy; PoW solves the nothing at stake problem while ensuring another layer of blockchain immutability.

Peercoin is one blockchain using this hybrid method.

PoI is similar to PoS, but the consensus mechanism also takes into account other factors in giving nodes an advantage in mining blocks.

With NEM, the first blockchain to implement PoI, for example, nodes are rewarded for their productivity in the network, which includes their balance, as well as their number and value of transactions, among other ‘reputation’ factors.

In this consensus mechanism, each node publishes a public key. Transactions passing through the node are signed by the node and verified, and once enough identical responses are reached within the network, a consensus is met through that the transaction is valid. This simple mechanism does not require any hashing power and is particularly useful for storage systems.

PBFT has two potential problems. First, all involved parties must agree on the exact list of trusted participants. Secondly, the membership of such an agreement system is typically set by a central authority. Although these factors may not make it suitable for a public, decentralized cryptocurrency, it may be useful for other things such as private digital asset holding platforms.

PBFT is the consensus mechanism used by Hyperledger.

Before blockchains came along, there was no practical way to ensure that data in a distributed network (for example, a digital currency ledger) would remain secure from tampering by malicious or compromised nodes. With the birth of Bitcoin and PoW, a whole new generation of programmers and engineers set to work on solving this problem.

Many consensus mechanisms have sprung up as a result, most purporting to solve the same (Byzantine Generals) Problem. As blockchain is still a relatively new field, it is unclear which consensus mechanisms will prove themselves most useful and which ones will fall out of favor. As it stands now, differing consensus mechanisms are one of the fundamental factors that differentiates different cryptocurrencies.

Source: https://unhashed.com/cryptocurrency-coin-guides/blockchain-consensus-mechanisms/

Blockchain

GIBX Swap: Sky is the Limit for the Best Decentralized Exchange Platform

The era of decentralized exchanges has come with the maturity and application of digital technologies.

Published

on

The value of GIBX Swap, which focuses on mainstream cryptocurrencies, is predicted to continue growing, shortly after its recent launch, and its price has the potential to reach record heights.

The first and leading decentralized exchange platform in the world has been launched on Sep.14,2021. Two days later, it is announced that GIBX Swap has started trading.

Meanwhile, due to its reputation, it has officially been listed on CoinMarketCap, the world’s most-referenced price-tracking website for cryptoassets in the rapidly growing cryptocurrency space. 

Decentralized tech and business

DeFi, shortened for Decentralized Finance, has been catching on since 2020. GIBX Swap holds the view that being decentralized is prerequisite to DEX. Traditional exchanges tend to be centralized.

On the one hand, it serves as information intermediaries, solving the issue of asymmetry of information to some extent; on the other hand, it create a new information asymmetry in favor of itself by the monopoly and manipulation of information, sometimes at the cost of the legitimate interests of clients.

No matter how the stock market performs, centralized exchanges can rely on charges and fees to guarantee their revenues.

As far as GIBX SWAP is concerned, the era of decentralized exchanges has come with the maturity and application of digital technologies. As a new type of exchange, the decentralized exchange makes the fullest use of the decentralization of blockchain, building peer-to-peer trust and transactions, with no intermediary.

The transaction links are all on the chain and performed directly by the open-source smart contract. As long as the user has and keeps the private key, he/she doesn’t have to worry about property security.

GIBX Swap features decentralized technologies with its brand-new block chain trading underlying platform, new generation of trading contract and cross-chain decentralized exchange, and complete business model with asset safety, market liquidity, trading fairness, ecological openness and transaction experience.

It aims to become the benchmark for DEX platforms and the leading DEX platform for token swaps.

GIBX Swap is an automated market maker (AMM) that allows a user to exchange two tokens. The liquidity provided to the exchange comes from Liquidity Providers (“LPs”) who stake their tokens in Liquidity Pools. In exchange, a user gets LP tokens that can also be staked to earn X tokens in the “Pool”.

Blockchain security protection from inside and outside

GIBX Swap puts emphasis on blockchain security protection. For one thing, it strengthens its own security from inside; for another thing, it has its smart contract technology code audited. Certik, the world’s leading block chain security audit institution has provided an audit for the project.

Established by the research team from Yale University and Columbia University with a decade of research, Certik has been providing code security audit services for blockchain applications and smart contracts, and the highest level of code security solution.

It is announced that GIBX Swap has passed the Certik security audit, which is carried out in a comprehensive review from Static Analysis, On-chain Monitoring, Social Sentiment, Governance & Autonomy, Market Volatility and Safety Assessment in search of potential safety hazards and possible production vulnerabilities.

It is confirmed once again after the audit by Certik that the technical code delivered by GIBX Swap is at a very high level of security, and GIBX Swap has the initiative to perform security tests.

Price predicted to reach new high 

GIBX Swap is highly committed to the supplier of true value, fairness, and innovation to decentralized finance through high-quality products and services.

It aims to become a benchmark for DEX platforms and take up the mantle of becoming the leading DEX platform on the market for token swaps. GIBX Swap is fast, secure no which anyone can swap and earn tokens.

A growing number of people has been paid attention to GIBX Swap ever since its launch. There have been over 46,000 followers in twitter, and more than 90,000 members in its TG.

GIBX Swap has shown strong potential lately and this could be a good chance to invest. Its value is expected to continue to expand, as shortage tends to encourage price rise.

In terms of price, GIBX Swap has an outstanding potential to reach new heights. X is forecast to increase in value. GIBX Swap can hit the highest price of $23.62 till 2030.

GIBX Swap is affiliated to GIBX, an international comprehensive Internet brokerage firm created by GIB Global Investment Bank & Capital Trust and a digital asset trading platform covering forex functions. GIBX has teamed up with world-renowned cryptocurrency platforms and top liquidity providers, including but not limited to: CoinMarketCap, CoinGecko, JPMorgan Chase, Goldman Sachs etc. in order to provide users a more transparent and convenient trading experience. As a financial trading platform regulated by international authorities such as FCA, ASIC, NFA, GIBX strictly follows all rules and regulations and uses reliable risk management solutions to ensure the safety of users’ capital.

PlatoAi. Web3 Reimagined. Data Inteligence Amplifed.
Click here for Free Trial.

Source: https://www.financemagnates.com/thought-leadership/gibx-swap-sky-is-the-limit-for-the-best-decentralized-exchange-platform/

Continue Reading

Blockchain

Solana, Polkadot, Algorand: What is the Bitcoin effect on these altcoins

Published

on

With the market trading in red today pretty much all coins including Bitcoin and Ethereum are falling. However, there are some coins that made excellent gains in the last 2 months which are now facing huge price falls as well.

Which alts though?

Solana, Polkadot, and Algorand were three altcoins that successfully rallied between July and August. Polkadot rose from $12.34 all the way to $34.45 registering a 214.33% growth. Similar gains were observed for Algorand as the coin breached $2 and marked a 230.26% rise. 

The most gains were seen by Solana holders though mainly because the altcoin shot up 713.94%. An increase this high was the result of the NFT hype which took it up from $26.68 to $191.07

Solana’s 713% rise | Source: TradingView – AMBCrypto

In fact, Solana and Algorand even registered new all-time highs during this time period. But each of these coins is now observing significant price falls as well. 

In the last 24 hours ALGO fell by 15.26%, DOT came down by 14.37% and SOL lost 16.8% of its price as of press time.

A huge reason behind this fall is also their exhausted momentum since even after the September 7 fall, DOT and ALGO witnessed another price rise before they finally hit a slowdown.

Algorand’s 15.26% drop | Source: TradingView – AMBCrypto

Owing to this investors are possibly getting rid of their holdings in both spot and derivatives markets. Sell volumes at the time of this report have increased and liquidations rose to millions for all 3 altcoins. Since SOL gained the most, it lost the most as well and its liquidations touched $25 million.

Solana liquidations at $25 million | Source: Coinalyze – AMBCrypto

Can Bitcoin save them?

Well since Bitcoin’s price movement commands the market’s movement it is obvious that BTC needs to reduce losses first. But more importantly, these assets’ correlation to Bitcoin will determine how much they will be affected by BTC. Right now Algorand is at the lowest at 0.57, followed by Solana at 0.7, and at the highest is Polkadot (0.88)

However, surprisingly, investors are most positive about Algorand of all three hoping for a recovery soon.

Investor sentiment | Source: Santiment – AMBCrypto

Once Bitcoin and Ethereum change their movement, other coins would follow suit. And that’s when some recovery can be expected.

Where to Invest?

Subscribe to our newsletter

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://ambcrypto.com/solana-poladot-algorand-what-is-the-bitcoin-effect-on-these-altcoins

Continue Reading

Blockchain

Kraken Daily Market Report for September 19 2021

Published

on


Overview


  • Total spot trading volume at $598.4 million, the 30-day average is $1.36 billion.
  • Total futures notional at $223.4 million.
  • The most traded coins were, respectively, Bitcoin (-2.2%), Ethereum (-3.1%), Tether (0%), Solana (-9.9%), and Cosmos (+8.8%).
  • Cosmos continues its hot streak, up 8.8%. Also strong returns from OMG (+10%).

September 19, 2021 
 $598.4M traded across all markets today
 Crypto, EUR, USD, JPY, CAD, GBP, CHF, AUD 
BTC 
$47237. 
↓2.2% 
$159.9M
ETH 
$3328.3 
↓3.1% 
$112.5M
USDT 
$1.0001 
↓0.01% 
$66.5M
SOL 
$152.62 
↓9.9% 
$39.4M
ATOM 
$44.205 
↑8.8% 
$34.8M
ADA 
$2.2816 
↓3.7% 
$33.9M
DOT 
$33.828 
↓2.9% 
$28.0M
USDC 
$1.0 
↓0.01% 
$19.8M
ALGO 
$1.975 
↓4.8% 
$16.0M
XTZ 
$6.5085 
↑1.1% 
$16.0M
XRP 
$1.0480 
↓2.5% 
$11.6M
LINK 
$27.364 
↓3.3% 
$8.56M
DOGE 
$0.2329 
↓3.3% 
$7.51M
LTC 
$181.89 
↑0.24% 
$7.26M
OMG 
$9.6562 
↑10% 
$6.8M
KSM 
$400.45 
↓4.2% 
$6.65M
EOS 
$4.912 
↓9.9% 
$4.86M
CRV 
$3.0345 
↑5.8% 
$4.84M
BCH 
$610.63 
↓3.2% 
$4.79M
DYDX 
$14.288 
↓12% 
$4.55M
MATIC 
$1.3112 
↓4.1% 
$4.14M
XLM 
$0.3134 
↓2.7% 
$3.04M
MOVR 
$387.12 
↓2.1% 
$2.95M
MINA 
$5.38 
↑1.7% 
$2.88M
ZEC 
$133.55 
↓3.8% 
$2.77M
TRX 
$0.1037 
↓2.0% 
$2.4M
AAVE 
$339.02 
↓4.5% 
$2.29M
SC 
$0.0180 
↓5.1% 
$2.02M
XMR 
$260.10 
↓4.2% 
$1.99M
FLOW 
$20.114 
↓2.9% 
$1.93M
DAI 
$1.0002 
↑0.01% 
$1.85M
ANT 
$5.9664 
↓3.2% 
$1.76M
MLN 
$123.19 
↑2.4% 
$1.72M
SNX 
$12.82 
↑1.7% 
$1.47M
DASH 
$192.81 
↓3.6% 
$1.32M
NANO 
$5.5184 
↓0.9% 
$1.31M
OXT 
$0.3665 
↓2.7% 
$1.29M
ETC 
$55.316 
↓2.8% 
$1.26M
SRM 
$9.8570 
↓8.9% 
$1.23M
KAVA 
$6.0120 
↓4.3% 
$1.09M
CQT 
$1.193 
↓2.6% 
$907K
ICX 
$1.7976 
↓6.7% 
$837K
SDN 
$5.84 
↓2.7% 
$819K
KEEP 
$0.4473 
↓6.4% 
$809K
UNI 
$23.906 
↓2.3% 
$807K
WAVES 
$27.5 
↓5.1% 
$798K
KAR 
$9.941 
↓11% 
$790K
FIL 
$83.437 
↓1.0% 
$725K
YFI 
$32933. 
↓2.6% 
$649K
COMP 
$392.7 
↓2.1% 
$599K
QTUM 
$12.145 
↓3.3% 
$577K
OCEAN 
$0.7578 
↓5.7% 
$577K
SUSHI 
$12.017 
↓5.3% 
$513K
REN 
$0.8905 
↓5.9% 
$501K
GRT 
$0.8017 
↓3.4% 
$429K
RARI 
$19.69 
↓7.9% 
$406K
KNC 
$1.7345 
↓3.5% 
$339K
STORJ 
$1.3421 
↓3.9% 
$318K
PAXG 
$1763.7 
↓0.21% 
$305K
BAT 
$0.7403 
↓1.3% 
$269K
CTSI 
$0.6513 
↓3.6% 
$268K
AXS 
$63.35 
↓2.2% 
$245K
ENJ 
$1.5619 
↓4.9% 
$220K
LSK 
$3.6100 
↓0.6% 
$216K
ZRX 
$1.047 
↓5.4% 
$207K
EWT 
$10.199 
↓4.7% 
$197K
BAL 
$24.71 
↓3.9% 
$191K
MIR 
$3.6362 
↓3.0% 
$177K
CHZ 
$0.3165 
↓3.6% 
$156K
1INCH 
$2.9619 
↓4.3% 
$142K
GNO 
$265.44 
↓5.0% 
$141K
PERP 
$14.055 
↓5.7% 
$139K
MANA 
$0.7986 
↓2.8% 
$136K
BADGER 
$20.576 
↓8.8% 
$136K
OGN 
$1.0027 
↓5.0% 
$125K
MKR 
$2730.0 
↓2.9% 
$115K
INJ 
$10.950 
↑2.0% 
$99.1K
REP 
$25.857 
↓1.8% 
$95.5K
LPT 
$18.11 
↓4.2% 
$89.2K
ANKR 
$0.0947 
↓0.3% 
$76.3K
LRC 
$0.4531 
↓1.5% 
$71.4K
GHST 
$1.6867 
↓1.2% 
$56.2K
BAND 
$8.852 
↓4.2% 
$48.2K
SAND 
$0.7381 
↓4.7% 
$43.9K
TBTC 
$48240. 
↓3.4% 
$32.5K
REPV2 
$25.234 
↓3.7% 
$27.3K
BNT 
$3.923 
↓1.3% 
$15.5K
WBTC 
$47699. 
↓0.4% 
$12.3K



#####################. Trading Volume by Asset. ##########################################

Trading Volume by Asset


The figures below break down the trading volume of the largest, mid-size, and smallest assets. Cryptos are in purple, fiats are in blue. For each asset, the chart contains the daily trading volume in USD, and the percentage of the total trading volume. The percentages for fiats and cryptos are treated separately, so that they both add up to 100%.

Figure 1: Largest trading assets: trading volume (measured in USD) and its percentage of the total trading volume (September 20 2021)



Figure 2: Mid-size trading assets: (measured in USD) (September 20 2021)



###########. Daily Returns. #################################################

Daily Returns %


Figure 3: Returns over USD and XBT. Relative volume and return size is indicated by the size of the font. (September 20 2021)



###########. Disclaimer #################################################

The values generated in this report are from public market data distributed from Kraken WebSockets api. The total volumes and returns are calculated over the reporting day using UTC time.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://blog.kraken.com/post/11070/kraken-daily-market-report-for-september-19-2021/

Continue Reading
Uncategorized5 days ago

Wicked Craniums are now Nifty Gateway!

Uncategorized5 days ago

Acorns Hires Former Amazon Executive as President, Hints at Crypto Options

Uncategorized4 days ago

Swissquote Confirms European Expansion Plan, Focusing on Crypto

Uncategorized5 days ago

Head of Australian Crypto Exchange Says Regulations Are Beneficial

Blockchain5 days ago

Biggest Crypto Adoption Rumours: Apple, Amazon, and Walmart

Blockchain4 days ago

Massive NFT and Token Giveaway from Polker as Staking is Announced!

Blockchain5 days ago

The Signal and the Noise

News5 days ago

Evaluating Credit Card Debt Relief Options

Uncategorized4 days ago

Bingbon Launches its Carbon Free and Afforestation Project

Uncategorized4 days ago

Nickelodeon All-Star Brawl will include DLC fighters post-launch

News4 days ago

Gods Unchained and Guild of Guardians Layer 2 Solution Immutable Raises $60 Million

Blockchain5 days ago

What’s Behind Elrond (EGLD) Daily Surges?

Blockchain5 days ago

Public.com Inks Deal with NFL Star to Advise on Financial Literacy Programs

Blockchain2 days ago

Over 40 days after Ethereum’s EIP-1559, here’s where it stands

Uncategorized5 days ago

This needs to happen before Peter Schiff will buy Bitcoin (BTC)

Blockchain4 days ago

Opensea NFT marketplace Accuses Senior Employee of Insider Trading

Blockchain5 days ago

Venture Firm Raises $350 Million to Double Down on Its Cryptocurrency Involvement

Blockchain4 days ago

Grab a spot in Tomi’s presale by bagging an NFT – 260+ ETH raised!

Blockchain4 days ago

Kanga Exchange Partners with Tenset for an Exclusive Public Sale of KNG Token

Blockchain5 days ago

Cardano’s Successful Alonzo Upgrade Sees PolyMarket Lose Bet

Trending